论文标题

飞行员:通过模仿学习和优化安全自动驾驶的有效计划

PILOT: Efficient Planning by Imitation Learning and Optimisation for Safe Autonomous Driving

论文作者

Pulver, Henry, Eiras, Francisco, Carozza, Ludovico, Hawasly, Majd, Albrecht, Stefano V., Ramamoorthy, Subramanian

论文摘要

在计划质量,安全性和效率之间达到适当的平衡是自动驾驶的主要挑战。基于优化的运动计划者能够制定安全,平稳和舒适的计划,但通常以运行时效率为代价。另一方面,通过有效运行的深度模仿学习方法产生的天真部署轨迹可能会损害安全性。在本文中,我们介绍了飞行员 - 一个计划框架包括一个模仿神经网络,然后是有效的优化器,该框架积极纠正网络的计划,确保满足安全性和舒适性要求。高效优化器的目的与基于昂贵的基于优化的计划系统的目标相同,该计划是神经网络的脱机训练以模仿的。这种有效的优化器为在线障碍或分发情况下的缺陷提供了关键的在线保护层,这可能会损害安全性或舒适性。我们使用最先进的基于运行时密集型优化的方法作为专家,我们在卡拉的模拟自主驾驶实验中证明,与专家相比,该试验在不牺牲计划质量的情况下模仿的专家时,运行时降低了七倍。

Achieving a proper balance between planning quality, safety and efficiency is a major challenge for autonomous driving. Optimisation-based motion planners are capable of producing safe, smooth and comfortable plans, but often at the cost of runtime efficiency. On the other hand, naively deploying trajectories produced by efficient-to-run deep imitation learning approaches might risk compromising safety. In this paper, we present PILOT -- a planning framework that comprises an imitation neural network followed by an efficient optimiser that actively rectifies the network's plan, guaranteeing fulfilment of safety and comfort requirements. The objective of the efficient optimiser is the same as the objective of an expensive-to-run optimisation-based planning system that the neural network is trained offline to imitate. This efficient optimiser provides a key layer of online protection from learning failures or deficiency in out-of-distribution situations that might compromise safety or comfort. Using a state-of-the-art, runtime-intensive optimisation-based method as the expert, we demonstrate in simulated autonomous driving experiments in CARLA that PILOT achieves a seven-fold reduction in runtime when compared to the expert it imitates without sacrificing planning quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源