论文标题
非切割cartan模块化曲线上的二次点
Quadratic Points on Non-Split Cartan Modular Curves
论文作者
论文摘要
在本文中,我们研究了非切片的cartan模块化曲线上的二次点$ x_ {ns}(p)$,对于$ p = 7、11,$和$ 13 $。最近,Siksek证明了$ x_ {ns}(7)上的所有二次点$作为$ x_ {ns}}^+(7)$的理性点的回调。使用$ P = 11 $的类似技术,并使用$ p = 13 $的对称曲线的Chabauty版本,我们表明,相同的价格适用于$ x_ {ns}(11)$和$ x_ {ns}}(ns}}(13)$。结果,我们证明了二次场上的某些椭圆曲线是模块化的。
In this paper we study quadratic points on the non-split Cartan modular curves $X_{ns}(p)$, for $p = 7, 11,$ and $13$. Recently, Siksek proved that all quadratic points on $X_{ns}(7)$ arise as pullbacks of rational points on $X_{ns}^+(7)$. Using similar techniques for $p=11$, and employing a version of Chabauty for symmetric powers of curves for $p=13$, we show that the same holds for $X_{ns}(11)$ and $X_{ns}(13)$. As a consequence, we prove that certain classes of elliptic curves over quadratic fields are modular.