论文标题

流体动力投影和一维隔离系统中线性化的欧拉方程的出现

Hydrodynamic projections and the emergence of linearised Euler equations in one-dimensional isolated systems

论文作者

Doyon, Benjamin

论文摘要

数学物理学中最深刻的问题之一是从第一原理中建立在大型,孤立,强烈相互作用的多体系统中的水动力方程。这涉及在可逆动力学下长时间理解放松,确定出现的集体自由度(弹道波)的空间,表明投影发生在它们上并确定其动力学(水动力方程)。我们在这些方向上取得了进步,重点是简单地对一维系统。在与广泛保守电荷的完整空间无关的定义下,我们表明流体动力投影发生在Euler尺度的两点相关函数中。基本要素是放松的特性:我们在时空上几乎沿着几乎每个方向建立了相关函数的真实性。我们进一步表明,对于每个具有局部密度的广泛保守电荷,都将局部电流和连续性方程相关联。局部保守密度的欧拉斯级两点相关函数满足流体动力方程。结果是在基于可观察到的希尔伯特空间的一般框架内严格建立的。这些空间自然出现在Gelfand-Naimark-Segal结构的统计力学描述中。使用Araki的指数聚类和Lieb-Robinson结合,我们表明,例如,在每个非零温度的吉布斯状态下,结果都保持在短距离量子旋转链中。我们引入的许多技术可以推广到更高的维度。这为在欧拉量表上出现弹道波的出现以及它们如何在同质的固定状态中传播提供了一种精确而通用的理论。

One of the most profound questions of mathematical physics is that of establishing from first principles the hydrodynamic equations in large, isolated, strongly interacting many-body systems. This involves understanding relaxation at long times under reversible dynamics, determining the space of emergent collective degrees of freedom (the ballistic waves), showing that projection occurs onto them, and establishing their dynamics (the hydrodynamic equations). We make progress in these directions, focussing for simplicity on one-dimensional systems. Under a model-independent definition of the complete space of extensive conserved charges, we show that hydrodynamic projection occurs in Euler-scale two-point correlation functions. A fundamental ingredient is a property of relaxation: we establish ergodicity of correlation functions along almost every direction in space-time. We further show that to every extensive conserved charge with a local density is associated a local current and a continuity equation; and that Euler-scale two-point correlation functions of local conserved densities satisfy a hydrodynamic equation. The results are established rigorously within a general framework based on Hilbert spaces of observables. These spaces occur naturally in the $C^*$ algebra description of statistical mechanics by the Gelfand-Naimark-Segal construction. Using Araki's exponential clustering and the Lieb-Robinson bound, we show that the results hold, for instance, in every nonzero-temperature Gibbs state of short-range quantum spin chains. Many techniques we introduce are generalisable to higher dimensions. This provides a precise and universal theory for the emergence of ballistic waves at the Euler scale and how they propagate within homogeneous, stationary states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源