论文标题

快速网络社区的检测,具有概况伪造的可能性方法

Fast Network Community Detection with Profile-Pseudo Likelihood Methods

论文作者

Wang, Jiangzhou, Zhang, Jingfei, Liu, Binghui, Zhu, Ji, Guo, Jianhua

论文摘要

随机块模型是研究最多的社区检测网络模型之一。众所周知,提出的大多数用于拟合随机块模型可能性函数函数的算法无法扩展到大规模网络。克服这一计算挑战的一项重要工作是Amini等人(2013年),该工作提出了一种将随机块模型拟合到大型稀疏网络的快速伪样方法。但是,这种方法没有收敛的保证,并且不适合中小型网络。在本文中,我们提出了一种基于新颖的可能性方法,该方法将行和列标记在可能性函数中,从而实现快速交替的最大化。新方法在计算上是有效的,对于小规模和大型网络都很好,并且具有可证明的收敛保证。我们表明,我们的方法在随机块模型中提供了对社区的强烈一致估计。正如模拟研究所证明的那样,根据估计精度和计算效率,尤其是对于大稀疏网络,该方法的表现优于伪样方法。我们进一步考虑了我们提出的方法的扩展,以处理具有程度异质性和两部分特性的网络。

The stochastic block model is one of the most studied network models for community detection. It is well-known that most algorithms proposed for fitting the stochastic block model likelihood function cannot scale to large-scale networks. One prominent work that overcomes this computational challenge is Amini et al.(2013), which proposed a fast pseudo-likelihood approach for fitting stochastic block models to large sparse networks. However, this approach does not have convergence guarantee, and is not well suited for small- or medium- scale networks. In this article, we propose a novel likelihood based approach that decouples row and column labels in the likelihood function, which enables a fast alternating maximization; the new method is computationally efficient, performs well for both small and large scale networks, and has provable convergence guarantee. We show that our method provides strongly consistent estimates of the communities in a stochastic block model. As demonstrated in simulation studies, the proposed method outperforms the pseudo-likelihood approach in terms of both estimation accuracy and computation efficiency, especially for large sparse networks. We further consider extensions of our proposed method to handle networks with degree heterogeneity and bipartite properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源