论文标题
CACL:班级感知的代码书学习,用于漫射图像模式的弱监督细分
CaCL: Class-aware Codebook Learning for Weakly Supervised Segmentation on Diffuse Image Patterns
论文作者
论文摘要
在生物医学图像分析中,弱监督的学习已经迅速发展,以从图像注释(分类)获得像素标签(分段),因为在许多情况下,生物医学图像自然包含图像标签。当前来自计算机视觉社区的弱监督学习算法主要是为焦点对象(例如狗和猫)设计的。但是,这种算法未针对生物医学成像中的弥漫模式进行优化(例如,显微镜成像中的污渍和荧光)。在本文中,我们提出了一种新颖的班级认识代码书学习(CACL)算法,以对弥漫性图像模式执行弱监督的学习。具体而言,将CaCl算法部署到分段蛋白质从人十二指肠的组织学图像中表达的刷子边界区域。我们的贡献是三个方面:(1)我们从新颖的代码书学习角度来处理弱监督的细分; (2)CACL算法段扩散图像模式,而不是焦点对象; (3)所提出的算法是在基于矢量量化变量自动编码器(VQ-VAE)的多任务框架中实现的,该算法通过关节图像重建,分类,特征嵌入和分段。实验结果表明,与基线弱监督算法相比,我们的方法取得了出色的性能。该代码可在https://github.com/ddrrnn123/cacl上找到。
Weakly supervised learning has been rapidly advanced in biomedical image analysis to achieve pixel-wise labels (segmentation) from image-wise annotations (classification), as biomedical images naturally contain image-wise labels in many scenarios. The current weakly supervised learning algorithms from the computer vision community are largely designed for focal objects (e.g., dogs and cats). However, such algorithms are not optimized for diffuse patterns in biomedical imaging (e.g., stains and fluorescence in microscopy imaging). In this paper, we propose a novel class-aware codebook learning (CaCL) algorithm to perform weakly supervised learning for diffuse image patterns. Specifically, the CaCL algorithm is deployed to segment protein expressed brush border regions from histological images of human duodenum. Our contribution is three-fold: (1) we approach the weakly supervised segmentation from a novel codebook learning perspective; (2) the CaCL algorithm segments diffuse image patterns rather than focal objects; and (3) the proposed algorithm is implemented in a multi-task framework based on Vector Quantised-Variational AutoEncoder (VQ-VAE) via joint image reconstruction, classification, feature embedding, and segmentation. The experimental results show that our method achieved superior performance compared with baseline weakly supervised algorithms. The code is available at https://github.com/ddrrnn123/CaCL.