论文标题

3D多体:合理的3D人类模型的拟合集与模棱两可的图像数据

3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous Image Data

论文作者

Biggs, Benjamin, Ehrhadt, Sébastien, Joo, Hanbyul, Graham, Benjamin, Vedaldi, Andrea, Novotny, David

论文摘要

我们考虑从单一和部分遮挡的观点获得人类密集的3D重建的问题。在这种情况下,视觉证据通常不足以唯一地识别3D重建,因此我们旨在恢复与输入数据兼容的几种合理的重建。我们建议,可以通过合适的3D模型(例如人类的SMPL)来参数可能的身体形状和摆姿势来更有效地建模歧义。我们建议使用最佳M损失来学习多种假设神经网络回归剂,其中每个M假设都被限制在通过生成模型中的合理人类姿势上。我们表明,我们的方法在3D人类的标准基准和这些基准的严重遮挡版本上的标准基准测试中均超过了其他方法。

We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views. In such cases, the visual evidence is usually insufficient to identify a 3D reconstruction uniquely, so we aim at recovering several plausible reconstructions compatible with the input data. We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses via a suitable 3D model, such as SMPL for humans. We propose to learn a multi-hypothesis neural network regressor using a best-of-M loss, where each of the M hypotheses is constrained to lie on a manifold of plausible human poses by means of a generative model. We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans, and in heavily occluded versions of these benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源