论文标题

信息理论任务选择用于元提升学习

Information-theoretic Task Selection for Meta-Reinforcement Learning

论文作者

Gutierrez, Ricardo Luna, Leonetti, Matteo

论文摘要

在元强化学习(META-RL)中,对代理人进行了一组任务培训,以准备并在新的,看不见但相关的任务中更快地学习和学习。培训任务通常是手工制作的,以代表测试任务的预期分布,因此全部用于培训。我们表明,如果适当地选择了培训任务,则鉴于一组培训任务,学习可以更快,更有效(在测试任务中提高性能更好)。我们根据信息理论提出了一种任务选择算法,信息理论任务选择(ITTS),该算法如何优化用于元素元素培训的任务集,而不论它们的生成方式如何。该算法确定了哪些培训任务与测试任务足够相关,并且相互不同。我们从文献中重现了不同的元RL实验,并表明ITT可以改善所有这些实验。

In Meta-Reinforcement Learning (meta-RL) an agent is trained on a set of tasks to prepare for and learn faster in new, unseen, but related tasks. The training tasks are usually hand-crafted to be representative of the expected distribution of test tasks and hence all used in training. We show that given a set of training tasks, learning can be both faster and more effective (leading to better performance in the test tasks), if the training tasks are appropriately selected. We propose a task selection algorithm, Information-Theoretic Task Selection (ITTS), based on information theory, which optimizes the set of tasks used for training in meta-RL, irrespectively of how they are generated. The algorithm establishes which training tasks are both sufficiently relevant for the test tasks, and different enough from one another. We reproduce different meta-RL experiments from the literature and show that ITTS improves the final performance in all of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源