论文标题

保守的甘露砂岩中的密度松弛

Density relaxation in conserved Manna sandpiles

论文作者

Tapader, Dhiraj, Pradhan, Punyabrata, Dhar, Deepak

论文摘要

我们研究了在一维甘露砂岩中的长波长密度扰动的松弛。相关长度$ξ$是有限的远非关键,而是具有波数$ k \ rightarrow 0 $的密度曲线的放松是扩散的,放松时间$τ_r\ sim k^{ - 2}/d $与$ d $是密度依赖的体积 - 散热器 - 散布 - 散布式 - 散装系数。几乎具有$k吻\ gsim 1 $的临界性,散装扩散率分歧,传输变得异常;因此,放松时间的变化为$τ_r\ sim k^{ - z} $,具有动态指数$ z = 2-(1-β)/ν_ {\ perp} <2 $,其中$β$是关键的订单 - 参数仪 - 参数仪的关键订单 - 参数指数和$ν_ {\ perp} $是关键的correLation-lentement。在无限临界背景上最初局部密度曲线的放松表现出自相似的结构。在这种情况下,通过分析计算时间相关密度曲线的渐近缩放形式:我们发现,在长期$ t $中,密度扰动的宽度$σ$异常增长,即$σ\ sim t^{w} $,具有增长指数$ω= 1/(1+β)> 1+β)> 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2 $ 1-2。在所有情况下,理论预测与模拟都相当良好。

We study relaxation of long-wavelength density perturbations in one dimensional conserved Manna sandpile. Far from criticality where correlation length $ξ$ is finite, relaxation of density profiles having wave numbers $k \rightarrow 0$ is diffusive, with relaxation time $τ_R \sim k^{-2}/D$ with $D$ being the density-dependent bulk-diffusion coefficient. Near criticality with $k ξ\gsim 1$, the bulk diffusivity diverges and the transport becomes anomalous; accordingly, the relaxation time varies as $τ_R \sim k^{-z}$, with the dynamical exponent $z=2-(1-β)/ν_{\perp} < 2$, where $β$ is the critical order-parameter exponent and and $ν_{\perp}$ is the critical correlation-length exponent. Relaxation of initially localized density profiles on infinite critical background exhibits a self-similar structure. In this case, the asymptotic scaling form of the time-dependent density profile is analytically calculated: we find that, at long times $t$, the width $σ$ of the density perturbation grows anomalously, i.e., $σ\sim t^{w}$, with the growth exponent $ω=1/(1+β) > 1/2$. In all cases, theoretical predictions are in reasonably good agreement with simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源