论文标题
随机混合状态的纠缠负频谱:一种示意方法
Entanglement negativity spectrum of random mixed states: A diagrammatic approach
论文作者
论文摘要
随机纯状态的纠缠特性与从混乱量子动力学到黑洞物理学的各种问题有关。此类州的平均二分纠缠熵承认了一项批量定律,并在增加了子区域的规模后,遵循页面曲线。在本文中,我们通过将系统耦合到浴场并使用部分转置来研究其纠缠特性,从而将这种设置推广到随机混合状态。我们开发了一种示意方法,将部分转置纳入随机矩阵理论中,并以$ 1/l $(希尔伯特空间维度的倒数)制定扰动理论。我们计算了几个量,包括部分转置的光谱密度(或纠缠负频谱),特征值的两点相关器以及对数负面性。只要浴缸比系统小,我们发现在扫描子区域的大小时,对数消极情绪显示出初始增加和最终减小与页面曲线相似,而它承认了中间状态中的平稳性,在该方案中,对数消极情绪仅取决于系统的大小和浴缸的大小,而不是浴缸的分析方式。该中间相在随机纯状态下没有类似物,并以临界点与其他两个方案分开。我们进一步表明,当浴缸大于系统时,至少有两个额外的Qubits时,对数负性的零是零,这意味着没有可蒸馏的纠缠。使用图表方法,我们简单地衍生了后两个制度中纠缠负频谱的半圆定律。我们表明,尽管出现了半圆形分布,让人联想到高斯统一集合(GUE),但对消极频谱的高阶校正和两点相关器与GUE的相关器不同。
The entanglement properties of random pure states are relevant to a variety of problems ranging from chaotic quantum dynamics to black hole physics. The averaged bipartite entanglement entropy of such states admits a volume law and upon increasing the subregion size follows the Page curve. In this paper, we generalize this setup to random mixed states by coupling the system to a bath and use the partial transpose to study their entanglement properties. We develop a diagrammatic method to incorporate partial transpose within random matrix theory and formulate a perturbation theory in $1/L$, the inverse of the Hilbert space dimension. We compute several quantities including the spectral density of partial transpose (or entanglement negativity spectrum), two-point correlator of eigenvalues, and the logarithmic negativity. As long as the bath is smaller than the system, we find that upon sweeping the subregion size, the logarithmic negativity shows an initial increase and a final decrease similar to the Page curve, while it admits a plateau in the intermediate regime where the logarithmic negativity only depends on the size of the system and of the bath but not on how the system is partitioned. This intermediate phase has no analog in random pure states, and is separated from the two other regimes by a critical point. We further show that when the bath is larger than the system by at least two extra qubits the logarithmic negativity is identically zero which implies that there is no distillable entanglement. Using the diagrammatic approach, we provide a simple derivation of the semi-circle law of the entanglement negativity spectrum in the latter two regimes. We show that despite the appearance of a semicircle distribution, reminiscent of Gaussian unitary ensemble (GUE), the higher order corrections to the negativity spectrum and two-point correlator deviate from those of GUE.