论文标题
散射矩阵中的几何和纠缠
Geometry and entanglement in the scattering matrix
论文作者
论文摘要
开发了核子核子散射的表述,其中S-矩阵而不是有效场理论(EFT)作用是基本对象。时空在此描述中没有任何作用:S-Matrix是一种轨迹,它在由单位性定义的紧凑理论空间中移动的RG固定点之间移动。该理论空间具有自然的操作员定义,并且在四维欧几里得空间中单位性约束的几何嵌入产生了一个平坦的圆环,这是S-Matrix繁殖的阶段。纠缠消失的轨迹是扁平圆环的RG固定点之间的特殊测量学,而纠缠则由外部潜力驱动。描述S-矩阵轨迹的方程系统通常是复杂的,但是非常低的能量S-Matrix(在EFT描述中出现在领先地位上)具有紫外线/IR的综合不变性,它使方程式可以整合,并完全决定了潜力。在这种几何观点中,非弹性与三维双曲空间的半径相对应,其二维边界是平坦的圆环。该空间在消失的半径上具有奇异性,对应于最大程度的侵犯单位性。可以通过可量化的误差明确构建平面圆环边界上的轨迹,从而提供了全息量子误差校正代码的简单示例。
A formulation of nucleon-nucleon scattering is developed in which the S-matrix, rather than an effective-field theory (EFT) action, is the fundamental object. Spacetime plays no role in this description: the S-matrix is a trajectory that moves between RG fixed points in a compact theory space defined by unitarity. This theory space has a natural operator definition, and a geometric embedding of the unitarity constraints in four-dimensional Euclidean space yields a flat torus, which serves as the stage on which the S-matrix propagates. Trajectories with vanishing entanglement are special geodesics between RG fixed points on the flat torus, while entanglement is driven by an external potential. The system of equations describing S-matrix trajectories is in general complicated, however the very-low-energy S-matrix -- that appears at leading-order in the EFT description -- possesses a UV/IR conformal invariance which renders the system of equations integrable, and completely determines the potential. In this geometric viewpoint, inelasticity is in correspondence with the radius of a three-dimensional hyperbolic space whose two-dimensional boundary is the flat torus. This space has a singularity at vanishing radius, corresponding to maximal violation of unitarity. The trajectory on the flat torus boundary can be explicitly constructed from a bulk trajectory with a quantifiable error, providing a simple example of a holographic quantum error correcting code.