论文标题

Faraway-frustum:使用Fusion处理3D对象检测的激光雷达稀疏性

Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object Detection using Fusion

论文作者

Zhang, Haolin, Yang, Dongfang, Yurtsever, Ekim, Redmill, Keith A., Özgüner, Ümit

论文摘要

学到的PointCloud表示形式并不能很好地概括传感器的距离。例如,在大于60米的范围内,LiDar Pointcloud的稀疏性达到了一个即使人类无法辨别对象形状的地步。但是,对于快速移动的车辆,不应将此距离视为很远:车辆以70英里 /小时的速度移动时可以在2秒内穿越60米。为了安全且健壮的驾驶自动化,在这些范围内的急性3D对象检测是必不可少的。在此背景下,我们介绍了Faraway-Frustum:一种用于检测遥远对象的新型融合策略。主要策略是仅依赖于识别对象类的2D视觉,因为对象形状不会随着深度的增加而发生巨大变化,并将尖头数据用于3D空间中的对象本地化以作为遥远的对象。对于更紧密的对象,我们改用最新的尖端表示表示。该策略通过学习的点云表示减轻对象检测的主要缺点。 KITTI数据集的实验表明,我们的方法的表现优于最先进的方法,该方法可用于在鸟类视图和3D中遥远的对象检测的相当大的差距。我们的代码是开源的,公开可用:https://github.com/dongfang-steven-yang/faraway-frustum。

Learned pointcloud representations do not generalize well with an increase in distance to the sensor. For example, at a range greater than 60 meters, the sparsity of lidar pointclouds reaches to a point where even humans cannot discern object shapes from each other. However, this distance should not be considered very far for fast-moving vehicles: A vehicle can traverse 60 meters under two seconds while moving at 70 mph. For safe and robust driving automation, acute 3D object detection at these ranges is indispensable. Against this backdrop, we introduce faraway-frustum: a novel fusion strategy for detecting faraway objects. The main strategy is to depend solely on the 2D vision for recognizing object class, as object shape does not change drastically with an increase in depth, and use pointcloud data for object localization in the 3D space for faraway objects. For closer objects, we use learned pointcloud representations instead, following state-of-the-art. This strategy alleviates the main shortcoming of object detection with learned pointcloud representations. Experiments on the KITTI dataset demonstrate that our method outperforms state-of-the-art by a considerable margin for faraway object detection in bird's-eye-view and 3D. Our code is open-source and publicly available: https://github.com/dongfang-steven-yang/faraway-frustum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源