论文标题

耦合的korteweg-de-vries系统的新的多驼峰精确孤子,并具有符合衍生物的衍生物,描述了通过RCAM的浅水波

New multi-hump exact solitons of a coupled Korteweg-de-Vries system with conformable derivative describing shallow water waves via RCAM

论文作者

Das, Prakash Kumar

论文摘要

在本文中,提出了快速收敛近似方法的修改,以求解使用浅水波的符合符合的衍生物耦合的korteweg-de Vries方程。基于Leibniz和链链规则,使用行动波转换将这些方程式用整数降低为ODE。采用修改方案,根据指数函数获得了还原耦合的普通微分方程的新的新型精确解决方案。最后,通过将它们放回行驶波转换中,可以得出具有符合衍生物的所考虑的部分微分方程的解。为了确保衍生解决方案的界限很少提出和证明。定理的派生结果用于绘制解决方案。图形展示了溶液具有变异的多驼峰孤子特征性及其尾巴衰减,以单调的方式呈指数型为零。这些结果不仅显示了修改方案的效率,而且还表明该解决方案具有新的多键功能。

In this article, a modification of the rapidly convergent approximation method is proposed to solve a coupled Korteweg-de Vries equations with conformable derivative that govern shallow-water waves. Based on the Leibniz and chain rule of conformable derivative, these equations reduced into ODEs with integer-order using traveling wave transformation. Adopting the modified scheme a new novel exact solution of the reduced coupled ordinary differential equations is obtained in terms of exponential functions. Finally, by putting them back into traveling wave transformation the solutions of the considered partial differential equations with conformable derivative are derived. To ensure the boundedness of the derived solutions few theorems have been proposed and proved. The derived results of the theorems are utilized to plot the solutions. Graphics exhibit that solutions have variant multi-hump soliton peculiarities and their tails decay to zero exponentially in a monotonic manner. These results not only show the efficiency of the modified scheme but also establish that the solution is enriched with new multi-hump features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源