论文标题
Pulsar故障在一个奇怪的星模中。 ii。活动
Pulsar glitches in a strangeon star model. II. The activity
论文作者
论文摘要
毛刺被认为是对Pulsar内部的有用探针,但潜在的物理仍然令人困惑。在常规中子星模型中,小故障活性可能反映了惯性的下限。然而,它的统计特征也可以在这里重点在这里的Strangeon Star模型中复制。我们在实心Strangeon Star模型的Starquake框架下制定了正常无线电脉冲星的故障活动,Strangeon Matter的剪切模量被约束为$μ\ simeq 3 \ simeq 3 \ times10^{34}〜\ rm erg/cm^{3} $,与先前的工作一致。然而,需要大约需要在故障间隔内积累的污垢转移的十倍才能实现统计观察。两个快速发展的脉冲星(Crab pulsar和PSR B0540-69)的典型故障尺寸比Vela Pulsar的数量级低两个数量级,这一事实明显低于它们所能提供的填充性变化,这表明只有一部分变化时,只有一部分是在Pulsars变化的一部分。在以下进化中,未释放的污垢和压力可能会作为补偿而放松。可以在这种现象学模型中同时解释螃蟹脉冲星的小故障大小和低故障活性。 Finally, we obtain energy release to be $ΔE\sim 2.4\times 10^{40}~\rm erg$ and $ΔE\sim 4.2\times 10^{41}~\rm erg$ for typical glitch size of $Δν/ν\sim 10^{-6}$ (Vela-like) and $\sim 10^{-8}$ (Crab-like).即将到来的SKA可以通过能量释放和降低的恢复系数$ q/| \dotν|^{1/2} $和$Δν/ν$之间的幂律关系测试该模型。
Glitch is supposed to be a useful probe into pulsar's interior, but the underlying physics remains puzzling. The glitch activity may reflect a lower limit of the crustal moment of inertia in conventional neutron star models. Nevertheless, its statistical feature could also be reproduced in the strangeon star model, which is focused here. We formulate the glitch activity of normal radio pulsars under the framework of starquake of solid strangeon star model, the shear modulus of strangeon matter is constrained to be $μ\simeq 3\times10^{34}~\rm erg/cm^{3}$, consistent with previous work. Nevertheless, about ten times the shift in oblateness accumulated during glitch interval is needed to fulfill the statistical observations. The fact that typical glitch sizes of two rapidly evolving pulsars (the Crab pulsar and PSR B0540-69) are about two orders of magnitude lower than that of the Vela pulsar, significantly lower than the oblateness change they can supply, indicates probably that only a part of oblateness change is relieved when a pulsar is young. The unreleased oblateness and stress may relax as compensation in the following evolution. The small glitch sizes and low glitch activity of the Crab pulsar can be explained simultaneously in this phenomenological model. Finally, we obtain energy release to be $ΔE\sim 2.4\times 10^{40}~\rm erg$ and $ΔE\sim 4.2\times 10^{41}~\rm erg$ for typical glitch size of $Δν/ν\sim 10^{-6}$ (Vela-like) and $\sim 10^{-8}$ (Crab-like). The upcoming SKA may test this model through the energy release and the power-law relation between the reduced recovery coefficient $Q/|\dotν|^{1/2}$ and $Δν/ν$.