论文标题
来自动力学理论的相对论非抗性粘性磁流失动力学:松弛时间方法
Relativistic non-resistive viscous magnetohydrodynamics from the kinetic theory:a relaxation time approach
论文作者
论文摘要
我们使用弛豫时间近似来得出相对论的非抗性,粘性二阶磁性水力学方程。使用Chapman-Enskog,例如在二阶截断的单粒子分布函数的梯度扩展,为颗粒和反颗粒系统求解了玻尔兹曼方程。在一阶中,传输系数与磁场无关。在二阶的,将磁场和耗散量的新的传输系数与在磁场存在的14摩托近似\ cite {denicol:2018rbw}中所获得的新型传输系数不同。然而,在弱磁场的极限下,这些方程的形式与14矩近似相同,尽管这些系数的值不同。我们还在Navier-Stokes限制中得出各向异性传输系数。
We derive the relativistic non-resistive, viscous second-order magnetohydrodynamic equations for the dissipative quantities using the relaxation time approximation. The Boltzmann equation is solved for a system of particles and antiparticles using Chapman-Enskog like gradient expansion of the single-particle distribution function truncated at second order. In the first order, the transport coefficients are independent of the magnetic field. In the second-order, new transport coefficients that couple magnetic field and the dissipative quantities appear which are different from those obtained in the 14-moment approximation \cite{Denicol:2018rbw} in the presence of a magnetic field. However, in the limit of the weak magnetic field, the form of these equations are identical to the 14-moment approximation albeit with a different values of these coefficients. We also derive the anisotropic transport coefficients in the Navier-Stokes limit.