论文标题
关于Lai-Massey计划的原始性
On the primitivity of Lai-Massey schemes
论文作者
论文摘要
在对称的加密术中,通常将用作迭代块密码的构建块的圆形函数作为不同层的组成,从而提供混乱和扩散。在过去的几年中,已经解决了由块密码A的圆形函数产生的此类层的条件的研究,无论是在替换置换网络和Feistel网络的情况下,都已经解决了,以阻止密码设计师收到收据,以避免不可分割的攻击。在本文中,提出了对LAI-MASSEY方案的主题的类似研究,该方案将替换置换网络和Feistel网络功能结合在一起。由于更普遍的结果,它对不可侵害的攻击具有抵抗力,在这种结果中,证明LAI-MASSEY方案的原始性的问题将减少到更简单的结果,以证明由严格相关替代置换网络的圆形函数产生的群体产生的原始性。
In symmetric cryptography, the round functions used as building blocks for iterated block ciphers are often obtained as the composition of different layers providing confusion and diffusion. The study of the conditions on such layers which make the group generated by the round functions of a block cipher a primitive group has been addressed in the past years, both in the case of Substitution Permutation Networks and Feistel Networks, giving to block cipher designers the receipt to avoid the imprimitivity attack. In this paper a similar study is proposed on the subject of the Lai-Massey scheme, a framework which combines both Substitution Permutation Network and Feistel Network features. Its resistance to the imprimitivity attack is obtained as a consequence of a more general result in which the problem of proving the primitivity of the Lai-Massey scheme is reduced to the simpler one of proving the primitivity of the group generated by the round functions of a strictly related Substitution Permutation Network.