论文标题

量子机学习中数据的力量

Power of data in quantum machine learning

论文作者

Huang, Hsin-Yuan, Broughton, Michael, Mohseni, Masoud, Babbush, Ryan, Boixo, Sergio, Neven, Hartmut, McClean, Jarrod R.

论文摘要

量子计算在机器学习中的使用是量子技术最令人兴奋的前瞻性应用之一。但是,提供数据的机器学习任务可能与常用的计算任务有很大不同。在这项工作中,我们表明,经典机器从数据中学习的一些经典很难计算的问题很容易预测。使用严格的预测错误界限作为基础,我们开发了一种评估学习任务中潜在量子优势的方法。对于广泛的学习模型,这些边界在渐近和经验上都是紧密的。这些结构解释了数值结果表明,借助数据,即使对量子问题量身定制,经典的机器学习模型也可以与量子模型具有竞争力。然后,我们提出了一个投影的量子模型,该模型为在容忍度易于的学习问题中提供了简单而严格的量子加速。对于近期实现,我们在工程数据集上证明了与某些经典模型相比,旨在在最大的基于门的量子机器学习的最大数值测试之一中证明最大量子优势的预测优势,该预测优势是最大的量子优势。

The use of quantum computing for machine learning is among the most exciting prospective applications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational tasks. In this work, we show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data. Using rigorous prediction error bounds as a foundation, we develop a methodology for assessing potential quantum advantage in learning tasks. The bounds are tight asymptotically and empirically predictive for a wide range of learning models. These constructions explain numerical results showing that with the help of data, classical machine learning models can be competitive with quantum models even if they are tailored to quantum problems. We then propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime. For near-term implementations, we demonstrate a significant prediction advantage over some classical models on engineered data sets designed to demonstrate a maximal quantum advantage in one of the largest numerical tests for gate-based quantum machine learning to date, up to 30 qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源