论文标题
野生kronecker颤抖和不适当
Wild Kronecker quivers and amenability
论文作者
论文摘要
我们将模块过高家族的概念应用于广义kronecker Quivers $kθ(d)$的野生路径代数。尽管预注射和后注射后的组件是高限的,但我们显示了常规组件中的非hyperfinite模块的存在,大约$ d $。利用尺寸扩展器来实现这一目标,我们的构建比以前的结果更明确。由此得出的,没有有限控制的野生代数为Asenable表示类型。
We apply the notion of hyperfinite families of modules to the wild path algebras of generalised Kronecker quivers $kΘ(d)$. While the preprojective and postinjective component are hyperfinite, we show the existence of a family of non-hyperfinite modules in the regular component for some $d$. Making use of dimension expanders to achieve this, our construction is more explicit than previous results. From this it follows that no finitely controlled wild algebra is of amenable representation type.