论文标题

使用模型形式保存最小二乘预测的多尺度运输问题的模型降低,并变化可变

Model Reduction for Multi-Scale Transport Problems using Model-form Preserving Least-Squares Projections with Variable Transformation

论文作者

Huang, Cheng, Wentland, Christopher R., Duraisamy, Karthik, Merkle, Charles

论文摘要

提出了一种基于投影的公式,以减少极端差异的非线性模型。该方法允许选择一组任意但完整的解决方案变量,同时保留了管理方程的结构。利用了最小二乘最小化的最小化,以确保与全阶模型(FOM)的对称性和离散一致性。使用两个级别的缩放层来实现有效处理极度分散的物理现象的问题所需的条件,其特征是方程式系统中的极端刚度。该公式 - 称为模型形式,以可变转换(MP-LSVT)保存最小二乘形式 - 为隐式和显式时间集成方案提供了全局稳定。为了达到计算效率,将枢纽的QR分解用于过采样,并适用于MP-LSVT方法。该框架在代表性的二维反应流问题中得到了证明,并且MP-LSVT显示出比标准投影基于基于投影的ROM技术的稳定性和准确性。通过在温度和物种质量分数中强制执行限制器来促进物理上的可靠性和局部稳定性。事实证明,这些限制器在消除虚假燃烧的区域很重要,从而使ROM能够准确地表示热释放速度和火焰传播速度。在3D应用中,可以表明,可以实现两个以上的计算效率加速度,同时还提供了合理的未来预测。这项工作的关键贡献是一种全面的ROM配方的开发和演示,该配方针对高度挑战性的多尺度运输主导的问题。

A projection-based formulation is presented for non-linear model reduction of problems with extreme scale disparity. The approach allows for the selection of an arbitrary, but complete, set of solution variables while preserving the structure of the governing equations. Least-squares-based minimization is leveraged to guarantee symmetrization and discrete consistency with the full-order model (FOM). Two levels of scaling are used to achieve the conditioning required to effectively handle problems with extremely disparate physical phenomena, characterized by extreme stiffness in the system of equations. The formulation -- referred to as model-form preserving least-squares with variable transformation (MP-LSVT) -- provides global stabilization for both implicit and explicit time integration schemes. To achieve computational efficiency, a pivoted QR decomposition is used with oversampling, and adapted to the MP-LSVT method. The framework is demonstrated in representative two- and three-dimensional reacting flow problems, and the MP-LSVT is shown to exhibit improved stability and accuracy over standard projection-based ROM techniques. Physical realizability and local stability are promoted by enforcing limiters in both temperature and species mass fractions. These limiters are demonstrated to be important in eliminating regions of spurious burning, thus enabling the ROMs to provide accurate representations of the heat release rate and flame propagation speed. In the 3D application, it is shown that more than two orders of magnitude acceleration in computational efficiency can be achieved, while also providing reasonable future-state predictions. A key contribution of this work is the development and demonstration of a comprehensive ROM formulation that targets highly challenging multi-scale transport-dominated problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源