论文标题

深层图像合成

Deep Image Compositing

论文作者

Zhang, He, Zhang, Jianming, Perazzi, Federico, Lin, Zhe, Patel, Vishal M.

论文摘要

图像合成是组合不同图像区域以构成新图像的任务。一个常见的用例是肖像图像的背景替代。为了获得高质量的复合材料,专业人士通常会手动执行多个编辑步骤,例如细分,垫子和前景颜色去污染,即使使用复杂的照片编辑工具,也非常耗时。在本文中,我们提出了一种新方法,该方法可以自动生成高质量的图像组合,而无需任何用户输入。我们的方法可以端对端训练,以优化对前景图像和背景图像的上下文和颜色信息的开发,在优化中考虑合成质量。具体而言,受到拉普拉斯金字塔混合的启发,提出了一个密集连接的多流融合网络,以在不同尺度上有效地从前景和背景图像中融合信息。此外,我们引入了一种自学成才的策略,以逐步训练从易于到复杂的案例,以减轻缺乏培训数据。实验表明,所提出的方法可以自动生成高质量的复合材料,并且在定性和定量上均优于现有方法。

Image compositing is a task of combining regions from different images to compose a new image. A common use case is background replacement of portrait images. To obtain high quality composites, professionals typically manually perform multiple editing steps such as segmentation, matting and foreground color decontamination, which is very time consuming even with sophisticated photo editing tools. In this paper, we propose a new method which can automatically generate high-quality image compositing without any user input. Our method can be trained end-to-end to optimize exploitation of contextual and color information of both foreground and background images, where the compositing quality is considered in the optimization. Specifically, inspired by Laplacian pyramid blending, a dense-connected multi-stream fusion network is proposed to effectively fuse the information from the foreground and background images at different scales. In addition, we introduce a self-taught strategy to progressively train from easy to complex cases to mitigate the lack of training data. Experiments show that the proposed method can automatically generate high-quality composites and outperforms existing methods both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源