论文标题

降噪以计算组织矿物质密度和小梁骨体积分数低分辨率QCT

Noise Reduction to Compute Tissue Mineral Density and Trabecular Bone Volume Fraction from Low Resolution QCT

论文作者

Thomsen, Felix, García, José M. Fuertes, Lucena, Manuel, Pisula, Juan, García, Rodrigo de Luis, Broggrefe, Jan, Delrieux, Claudio

论文摘要

我们提出了一个具有特定损失函数的3D神经网络,用于计算微观结构参数,例如组织矿物质密度(TMD)和骨体积比(BV/TV),其精度比使用NO或标准降低噪声过滤器的精度明显更高。椎骨 - 横向研究包含高分辨率的外围和临床CT扫描,并具有模拟的体内CT噪声和三种不同的管电流(100、250和360 MAS)的九次重复。在20466纯海绵状的嘈杂和地面斑块上进行了五倍的交叉验证。训练和测试错误的比较表明,与过度拟合的鲁棒性高。尽管没有显示出对BMD和体素密度评估的影响,但对于未经过滤的数据,该过滤器彻底改善了TMD和BV/TV的计算。低分辨率TMD和BV/TV的根平方和准确性误差降至初始值的少于17%。此外,过滤后的低分辨率扫描显示,与高分辨率CT扫描相比,TMD和BV/TV相关的信息更多,即未经过滤或使用两种最先进的标准Denoising方法进行过滤或过滤。所提出的体系结构是阈值和旋转不变的,可立即适用于各种图像分辨率,并且有可能用于准确计算进一步的微观结构参数。此外,与直接计算结构参数的神经网络相比,它易于过度拟合。总之,该方法对于诊断骨质疏松症和其他骨骼疾病至关重要,因为它允许从标准的低暴露CT COT方案(例如100 MAS和120 KVP)中评估相关的3D微结构信息。

We propose a 3D neural network with specific loss functions for quantitative computed tomography (QCT) noise reduction to compute micro-structural parameters such as tissue mineral density (TMD) and bone volume ratio (BV/TV) with significantly higher accuracy than using no or standard noise reduction filters. The vertebra-phantom study contained high resolution peripheral and clinical CT scans with simulated in vivo CT noise and nine repetitions of three different tube currents (100, 250 and 360 mAs). Five-fold cross validation was performed on 20466 purely spongy pairs of noisy and ground-truth patches. Comparison of training and test errors revealed high robustness against over-fitting. While not showing effects for the assessment of BMD and voxel-wise densities, the filter improved thoroughly the computation of TMD and BV/TV with respect to the unfiltered data. Root-mean-square and accuracy errors of low resolution TMD and BV/TV decreased to less than 17% of the initial values. Furthermore filtered low resolution scans revealed still more TMD- and BV/TV-relevant information than high resolution CT scans, either unfiltered or filtered with two state-of-the-art standard denoising methods. The proposed architecture is threshold and rotational invariant, applicable on a wide range of image resolutions at once, and likely serves for an accurate computation of further micro-structural parameters. Furthermore, it is less prone for over-fitting than neural networks that compute structural parameters directly. In conclusion, the method is potentially important for the diagnosis of osteoporosis and other bone diseases since it allows to assess relevant 3D micro-structural information from standard low exposure CT protocols such as 100 mAs and 120 kVp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源