论文标题

使用信用卡交易的商家类别识别

Merchant Category Identification Using Credit Card Transactions

论文作者

Yeh, Chin-Chia Michael, Zhuang, Zhongfang, Zheng, Yan, Wang, Liang, Wang, Junpeng, Zhang, Wei

论文摘要

近年来,随着小型企业和在线商店的快速增长,数字支付量已激增。在处理这些数字交易时,认识到每个商人的真实身份(即业务类型)对于确保付款处理系统的完整性至关重要。通常,此问题仅使用商家事务历史记录,将其作为时间序列分类问题提出。但是,随着数据的大规模数据以及随着时间的流逝的不断变化的商人和消费者的行为,从现成的分类方法中实现令人满意的绩效非常具有挑战性。在这项工作中,我们从多模式学习的角度解决了这个问题,我们不仅使用商人时间序列数据,而且使用商人关系(即亲和力)的信息来验证给定商户的自我报告的业务类型(即商人类别)。具体来说,我们设计了两个单独的编码器,其中一个负责编码时间信息,另一个负责亲和力信息,以及一种融合两个编码器输出以完成标识任务的机制。我们对71,668家商人和433,772,755个客户之间的现实信用卡交易数据进行了实验,已经证明了该模型的有效性和效率。

Digital payment volume has proliferated in recent years with the rapid growth of small businesses and online shops. When processing these digital transactions, recognizing each merchant's real identity (i.e., business type) is vital to ensure the integrity of payment processing systems. Conventionally, this problem is formulated as a time series classification problem solely using the merchant transaction history. However, with the large scale of the data, and changing behaviors of merchants and consumers over time, it is extremely challenging to achieve satisfying performance from off-the-shelf classification methods. In this work, we approach this problem from a multi-modal learning perspective, where we use not only the merchant time series data but also the information of merchant-merchant relationship (i.e., affinity) to verify the self-reported business type (i.e., merchant category) of a given merchant. Specifically, we design two individual encoders, where one is responsible for encoding temporal information and the other is responsible for affinity information, and a mechanism to fuse the outputs of the two encoders to accomplish the identification task. Our experiments on real-world credit card transaction data between 71,668 merchants and 433,772,755 customers have demonstrated the effectiveness and efficiency of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源