论文标题

对艺术图像的卷积神经网络的转移学习分析

An analysis of the transfer learning of convolutional neural networks for artistic images

论文作者

Gonthier, Nicolas, Gousseau, Yann, Ladjal, Saïd

论文摘要

从巨大的自然图像数据集,深度神经网络的微调以及相应的预训练网络的使用中转移学习已成为艺术分析应用的核心。然而,转移学习的影响仍然很少了解。在本文中,我们首先使用技术可视化网络内部表示形式,以便为了解网络在艺术图像上学到的知识提供线索。然后,我们对学习过程所引入的变化进行定量分析,这要归功于特征和参数空间中的指标,以及在最大激活图像集中计算的指标。这些分析是针对转移学习程序的几种变化进行的。特别是,我们观察到,网络可以将一些预训练的过滤器专门针对新的图像模式,并且较高的层倾向于集中类别。最后,我们已经表明,即使任务更改,涉及中型艺术数据集的双重微调也可以改善较小数据集的分类。

Transfer learning from huge natural image datasets, fine-tuning of deep neural networks and the use of the corresponding pre-trained networks have become de facto the core of art analysis applications. Nevertheless, the effects of transfer learning are still poorly understood. In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images. Then, we provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images. These analyses are performed on several variations of the transfer learning procedure. In particular, we observed that the network could specialize some pre-trained filters to the new image modality and also that higher layers tend to concentrate classes. Finally, we have shown that a double fine-tuning involving a medium-size artistic dataset can improve the classification on smaller datasets, even when the task changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源