论文标题
SIC微颗粒和纳米颗粒的SI空缺发射的应变调制
Strain modulation of Si vacancy emission from SiC micro- and nanoparticles
论文作者
论文摘要
半导体中的单光子发射点缺陷已成为未来量子技术设备的强大候选者。在目前的工作中,我们利用晶体颗粒来研究相关的缺陷局部位置,发射转移和波浪。具体而言,使用Cathodolumeinence(CL)收集了从100 nm到5 $μ$ m的6H-SIC微粒和纳米颗粒的发射,并且我们监视归因于Si Vacancy的信号(v $ _ {\ textrm {si}}} $)作为其位置的功能。对于位于粒子中心和边缘处的发射器的发射波长的清晰移动。通过将空间CL图与在透射电子显微镜中进行的应变分析进行比较,我们将发射转移归因于沿粒子A方向的2-3%的压缩应变。因此,嵌入v $ _ {\ textrm {si}} $ Qubit缺陷在SIC纳米颗粒中提供了一个有趣而多功能的机会,可以通过自组装的SIC Nananoparticle矩阵来调查单光子发射能量。
Single-photon emitting point defects in semiconductors have emerged as strong candidates for future quantum technology devices. In the present work, we exploit crystalline particles to investigate relevant defect localizations, emission shifting and waveguiding. Specifically, emission from 6H-SiC micro- and nanoparticles ranging from 100 nm to 5 $μ$m in size is collected using cathodoluminescence (CL), and we monitor signals attributed to the Si vacancy (V$_{\textrm{Si}}$) as a function of its location. Clear shifts in the emission wavelength are found for emitters localized in the particle center and at the edges. By comparing spatial CL maps with strain analysis carried out in transmission electron microscopy, we attribute the emission shifts to compressive strain of 2-3% along the particle a-direction. Thus, embedding V$_{\textrm{Si}}$ qubit defects within SiC nanoparticles offers an interesting and versatile opportunity to tune single-photon emission energies, while simultaneously ensuring ease of addressability via a self-assembled SiC nanoparticle matrix.