论文标题

通用网络的非局部性

Nonlocality for Generic Networks

论文作者

Renou, Marc-Olivier, Beigi, Salman

论文摘要

贝尔的定理表明,由单个纠缠量子状态创建的相关性不能经典地重现。这种相关称为非本地。它们是一种更广泛的现象的基本表现,称为网络非局部性,在网络中共享的几个纠缠状态创建网络非局部相关性。在本文中,我们提供了在通用网络中产生非本地相关性的第一类策略。在这些称为颜色匹配(CM)的策略中,任何来源都以随机或叠加的形式进行颜色,其中颜色是相关希尔伯特空间的基础的标签。聚会(除其他事项)还检查相邻来源的颜色是否匹配。我们表明,在没有输入的大量网络中,精心挑选的量子CM策略导致了无法经典产生的非局部相关性。对于我们的构建,我们介绍了网络中经典策略刚性的图形理论概念,并使用Finner不平等,建立网络非局部性和图理论之间的深厚联系。特别是,我们在CM策略与图形着色问题之间建立了联系。这项工作是通过较长的纸张网络非局部性扩展的,这是通过令牌计数和颜色匹配的刚度进行的,我们在其中介绍了第二个称为令牌计数的刚性策略系列,从而导致网络非局部性。

Bell's theorem shows that correlations created by a single entangled quantum state cannot be reproduced classically. Such correlations are called Nonlocal. They are the elementary manifestation of a broader phenomenon called Network Nonlocality, where several entangled states shared in a network create Network Nonlocal correlations. In this paper, we provide the first class of strategies producing nonlocal correlations in generic networks. In these strategies, called Color-Matching (CM), any source takes a color at random or in superposition, where the colors are labels for a basis of the associated Hilbert space. A party (besides other things) checks if the color of neighboring sources match. We show that in a large class of networks without input, well-chosen quantum CM strategies result in nonlocal correlations that cannot be produced classically. For our construction, we introduce the graph theoretical concept of rigidity of classical strategies in networks, and using the Finner inequality, establish a deep connection between network nonlocality and graph theory. In particular, we establish a link between CM strategies and the graph coloring problem. This work is extended in a longer paper, Network Nonlocality via Rigidity of Token-Counting and Color-Matching, where we introduce a second family of rigid strategies called Token-Counting, leading to network nonlocality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源