论文标题

负二项式回归的准确推断

Accurate inference in negative binomial regression

论文作者

Pagui, Euloge Clovis Kenne, Salvan, Alessandra, Sartori, Nicola

论文摘要

负二项式回归通常用于分析过度分散的计数数据。由于样本量较小,分散参数的最大似然估计量可能会受到明显的偏见,从而影响平均参数的推断。本文提出了基于针对平均值和中位偏差降低的分数函数的调整来推断负二项式回归。所得的估计方程与可用于改进通用线性模型中的推理的方程式相似,尤其是可以使用迭代加权最小二乘正方形的合适扩展来解决。仿真研究表明,新方法的出色性能,在许多情况下,这些方法也可以解决最大似然估计的数值问题。使用两个案例研究对这些方法进行了说明和评估:AMES沙门氏菌测定数据集和癫痫发作的数据。基于调整得分的推论通常比明确的偏置校正更可取。

Negative binomial regression is commonly employed to analyze overdispersed count data. With small to moderate sample sizes, the maximum likelihood estimator of the dispersion parameter may be subject to a significant bias, that in turn affects inference on mean parameters. This paper proposes inference for negative binomial regression based on adjustments of the score function aimed at mean and median bias reduction. The resulting estimating equations are similar to those available for improved inference in generalized linear models and, in particular, can be solved using a suitable extension of iterative weighted least squares. Simulation studies show a remarkable performance of the new methods, which are also found to solve in many cases numerical problems of maximum likelihood estimates. The methods are illustrated and evaluated using two case studies: an Ames salmonella assay data set and data on epileptic seizures. Inference based on adjusted scores turns out to be generally preferable to explicit bias correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源