论文标题

受限制微生物导航中的紧急概率通量

Emergent probability fluxes in confined microbial navigation

论文作者

Cammann, Jan, Schwarzendahl, Fabian Jan, Ostapenko, Tanya, Lavrentovich, Danylo, Bäumchen, Oliver, Mazza, Marco G.

论文摘要

当仔细观察到通气细胞的运动时,它看起来不稳定,但是非平衡力和表面的组合可以在微生物系统中产生令人惊叹的组织例子。尽管我们目前的大多数理解是基于批量系统或理想化的几何形状,但在复杂的几何形状中出现了如何以及在哪个长度尺度上出现的方式仍然难以捉摸。在这里,使用实验,分析和数值计算,我们研究了受控微流体条件下的流动细胞的运动,并证明即使在单个细胞的水平上,概率通量循环也会组织活跃运动,该电池探索了一个分离的非平凡几何学隔室。通过考虑活性和界面力的相互作用,我们发现边界的曲率决定了运动的非平衡概率通量。从理论上讲,我们预测通量与全局几何特性之间的普遍关系,这是通过实验直接证实的。我们的发现开辟了可能破译运动细胞最可能的轨迹的可能性,并可以使几何形状的设计指导其时间平均运动。

When the motion of a motile cell is observed closely, it appears erratic, and yet the combination of nonequilibrium forces and surfaces can produce striking examples of organization in microbial systems. While most of our current understanding is based on bulk systems or idealized geometries, it remains elusive how and at which length scale self-organization emerges in complex geometries. Here, using experiments, analytical and numerical calculations we study the motion of motile cells under controlled microfluidic conditions, and demonstrate that probability flux loops organize active motion even at the level of a single cell exploring an isolated compartment of nontrivial geometry. By accounting for the interplay of activity and interfacial forces, we find that the boundary's curvature determines the nonequilibrium probability fluxes of the motion. We theoretically predict a universal relation between fluxes and global geometric properties that is directly confirmed by experiments. Our findings open the possibility to decipher the most probable trajectories of motile cells and may enable the design of geometries guiding their time-averaged motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源