论文标题

Lambek-Grishin微积分:聚焦,展示和完整两极分化

Lambek-Grishin Calculus: Focusing, Display and Full Polarization

论文作者

Greco, Giuseppe, Richard, Valentin D., Moortgat, Michael, Tzimoulis, Apostolos

论文摘要

\ emph {集中的序列calculi}是序列序列利的改进,其中有关推理规则的适用性的附加侧条件迫使实施证明搜索策略。集中的无剪裁证明表现出一种特殊的正常形式,用于定义序列证明的身份。我们通过概括了\ emph {Multi-Type calculi}的理论及其代数语义,以\ emph {异性效果关系},我们引入了一种新型的集中表现FD.LG和一个完全极化的代数语义fp.lg,用于Lambek-Grishin逻辑。计算Fd.lg具有\ emph {强焦点},它是\ emph {sound and complete} w.r.t. fp.lg。就标准的极化代数语义而言,这种完整性结果比完整性更强(例如,参见Lambek-Grishin Logic或Hamano和Hamano和Takemura的bastenhof相位语义,用于线性逻辑),in,我们无需在相同表述上的连续应用程序上进行证明。我们计划研究此完整性结果与Abramsky等人介绍的\ emph {完整完整性}的概念之间的联系(如果有)。我们还显示了许多其他结果。 FD.LG是合理的,完整的W.R.T. LG-Algebras:鉴于Lambek-Grishin逻辑的标准(显示)序列计算是完整的W.R.T. LG代数。 fd.lg和Moortgat和Moot的重点计算F.LG相当于证据,实际上,从F.LG衍生到FD.LG衍生物,有效地翻译为:鉴于每个F.LG衍生品都在Curry-didecortion curry-ward a curry-ward a curry-ward a提供了链接:这提供了链接。 $ \Overlineλμ\widetildeμ$ - term。

\emph{Focused sequent calculi} are a refinement of sequent calculi, where additional side-conditions on the applicability of inference rules force the implementation of a proof search strategy. Focused cut-free proofs exhibit a special normal form that is used for defining identity of sequent calculi proofs. We introduce a novel focused display calculus fD.LG and a fully polarized algebraic semantics FP.LG for Lambek-Grishin logic by generalizing the theory of \emph{multi-type calculi} and their algebraic semantics with \emph{heterogenous consequence relations}. The calculus fD.LG has \emph{strong focalization} and it is \emph{sound and complete} w.r.t. FP.LG. This completeness result is in a sense stronger than completeness with respect to standard polarized algebraic semantics (see e.g. the phase semantics of Bastenhof for Lambek-Grishin logic or Hamano and Takemura for linear logic), insofar we do not need to quotient over proofs with consecutive applications of shifts over the same formula. We plan to investigate the connections, if any, between this completeness result and the notion of \emph{full completeness} introduced by Abramsky et al. We also show a number of additional results. fD.LG is sound and complete w.r.t. LG-algebras: this amounts to a semantic proof of the so-called \emph{completeness of focusing}, given that the standard (display) sequent calculus for Lambek-Grishin logic is complete w.r.t. LG-algebras. fD.LG and the focused calculus f.LG of Moortgat and Moot are equivalent with respect to proofs, indeed there is an effective translation from f.LG-derivations to fD.LG-derivations and vice versa: this provides the link with operational semantics, given that every f.LG-derivation is in a Curry-Howard correspondence with a directional $\overlineλμ\widetildeμ$-term.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源