论文标题

伽玛射线爆发的及时阶段的反向散射主导的及时发射模型

A backscattering dominated prompt emission model for the prompt phase of Gamma ray bursts

论文作者

Vyas, Mukesh K, Pe'er, Asaf, Eichler, David

论文摘要

当伽马射线爆炸(GRB)喷气式飞机穿过倒塌的恒星时,它将重的软木塞捕获在其前面。在这里,我们探索了GRB的及时发射模型,该模型在该模型中没有越过软木塞,而是在很大程度上通过对nih灭发射的光子散布在膨胀的软木塞中,并在很大程度上从后端逃脱,因为它们从后面推动它。由于软木的相对论运动,这些光子很容易被靠近射流轴峰值达到$ \ varepsilon_ {peak} \ sim〜几乎\ times 100 kev $的观察者很容易看到。我们表明,该模型自然解释了几个关键的观察特征,包括:(1)高能功率定律指数$β_1\​​ sim -2 {〜\ rm至〜} -5 $,带有中间热频谱区域; (2)提示发射光曲线的衰减为$ \ sim t^{ - 2} $; (3)软光子的延迟; (4)峰值能量 - 各向同性能(所谓的AMATI)相关性,$ \ VAREPSILON_ {peak} \ sim \ sim \ varepsilon_ {iso}^m $,带有$ m \ sim 0.45 $,由不同的视角产生。在低亮度下,我们的模型可以预测AMATI关系中可观察到的关闭。 (4)光谱全宽度最大值(FWHM)与时间为$ t^{ - 1} $之间的反相关。 (5)时间进化$ \ varepsilon_ {peak} \ sim t^{ - 1} $,伴随着随着时间的推移增加高能频谱。 (6)在观察到的GRB种群中,峰值$ \ varepsilon_ {peak} $的分布。该模型适用于单个脉冲GRB灯曲面和各自的光谱。鉴于当前和将来的迅速发射观察结果,我们讨论了我们的模型的后果。

As gamma-ray burst (GRB) jet drills its way through the collapsing star, it traps a baryonic cork ahead of it. Here we explore a prompt emission model for GRBs in which the jet does not cross the cork, but rather photons that are emitted deep in the flow largely by pair annihilation are scattered inside the expanding cork and escape largely from the back end of it as they push it from behind. Due to the relativistic motion of the cork, these photons are easily seen by an observer close to the jet axis peaking at $\varepsilon_{peak}\sim~few \times 100 keV$. We show that this model naturally explains several key observational features including: (1) High energy power law index $β_1 \sim -2 {~\rm to~} -5$ with an intermediate thermal spectral region; (2) decay of the prompt emission light curve as $\sim t^{-2}$; (3) Delay of soft photons; (4) peak energy - isotropic energy (the so-called Amati) correlation, $\varepsilon_{peak} \sim \varepsilon_{iso}^m$, with $m\sim 0.45$, resulting from different viewing angles. At low luminosities, our model predicts an observable turn off in the Amati relation. (4) An anti-correlation between the spectral full width half maxima (FWHM) and time as $t^{-1}$. (5) Temporal evolution $\varepsilon_{peak} \sim t^{-1}$, accompanied by an increase of the high energy spectral slope with time. (6) Distribution of peak energies $\varepsilon_{peak}$ in the observed GRB population. The model is applicable for a single pulse GRB lightcurves and respective spectra. We discuss the consequence of our model in view of the current and future prompt emission observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源