论文标题
所有模量的过度分区排名之间的不平等
Inequalities between overpartition ranks for all moduli
论文作者
论文摘要
在本文中,我们全面描述了过度分区等级之间可能发生的不平等现象。如果$ \ OVILLINE {n}(a,c,n)$表示$ n $的过度分支的数量,等级与$ a $ a $ modulo $ c,$,我们证明,对于任何$ c \ ge7 $和$ c \ ge7 $和$ 0 \ le a <b \ le a <b \ le \ le \ le \ weft \ weft \ lfloor \ lfloor \ frac \ frac $ c} $ \ + edline {n}(a,c,n)> \ edimelline {n}(b,c,n)$ for $ n $足够大。等级差异的符号$ \叠加{n}(a,c,n) - \ operline {n}(b,b,c,n)$取决于$ n $ modulo $ c $ $ c = 6的残基类别,例如$ c = 6,例如$ C = 6,$是由于JI,Zhang和Zhang and Zhang and Zhao(Zhao(2018)和Ciolan(2020)而闻名。我们表明,$ c \ in \ {2,3,4,5 \}的同一行为也具有相同的行为。 $
In this paper we give a full description of the inequalities that can occur between overpartition ranks. If $ \overline{N}(a,c,n) $ denotes the number of overpartitions of $ n $ with rank congruent to $ a $ modulo $ c,$ we prove that for any $ c\ge7 $ and $ 0\le a<b\le\left\lfloor\frac{c}{2}\right\rfloor $ we have $ \overline{N}(a,c,n)>\overline{N}(b,c,n) $ for $n$ large enough. That the sign of the rank differences $ \overline{N}(a,c,n)-\overline{N}(b,c,n) $ depends on the residue class of $ n $ modulo $ c $ in the case of small moduli, such as $ c=6, $ is known due to the work of Ji, Zhang and Zhao (2018) and Ciolan (2020). We show that the same behavior holds for $ c\in\{2,3, 4,5\}. $