论文标题
视网膜:一种对象感知的模拟传输方法
RetinaGAN: An Object-aware Approach to Sim-to-Real Transfer
论文作者
论文摘要
基于视觉的机器人操纵中深度加固学习(RL)和模仿学习(IL)的成功通常取决于大规模数据收集的费用。通过仿真,可以有效地收集训练策略的数据,但是SIM和真实之间的视觉差距使在现实世界中的部署变得困难。我们介绍了Retinagan,这是一种生成对抗网络(GAN)方法,以使模拟图像具有具有对象检测一致性的逼真图像。视网膜以无监督的方式进行了培训,而没有任务损失依赖性,并保留了适应性图像中的一般对象结构和纹理。我们在三个现实世界任务上评估了我们的方法:抓握,推动和开门。视网膜对基于RL的对象实例抓紧的先前SIM到真实方法的性能提高了,即使在有限的数据制度中,也继续有效。当将其应用于类似的视觉域中的推动任务时,Retinagan演示了传输,没有其他实际数据要求。我们还展示了我们的方法桥接视觉差距,以使用新的视觉域中的模仿学习,以实现新的门打开任务。访问项目网站https://retinagan.github.io/
The success of deep reinforcement learning (RL) and imitation learning (IL) in vision-based robotic manipulation typically hinges on the expense of large scale data collection. With simulation, data to train a policy can be collected efficiently at scale, but the visual gap between sim and real makes deployment in the real world difficult. We introduce RetinaGAN, a generative adversarial network (GAN) approach to adapt simulated images to realistic ones with object-detection consistency. RetinaGAN is trained in an unsupervised manner without task loss dependencies, and preserves general object structure and texture in adapted images. We evaluate our method on three real world tasks: grasping, pushing, and door opening. RetinaGAN improves upon the performance of prior sim-to-real methods for RL-based object instance grasping and continues to be effective even in the limited data regime. When applied to a pushing task in a similar visual domain, RetinaGAN demonstrates transfer with no additional real data requirements. We also show our method bridges the visual gap for a novel door opening task using imitation learning in a new visual domain. Visit the project website at https://retinagan.github.io/