论文标题

过滤普通和拉格朗日格拉曼尼亚人

Filtering cohomology of ordinary and Lagrangian Grassmannians

论文作者

"q-binomials, The 2020 Polymath Jr. REU, group", the Grassmannian, :, Ahmed, Huda, Chishti, Rasiel, Chiu, Yu-Cheng, Dorpalen-Barry, Galen, Ellis, Jeremy, Fang, David, Feigen, Michael, Feigert, Jonathan, González, Mabel, Harker, Dylan, Wei, Jiaye, Joshi, Bhavna, Kulkarni, Gandhar, Lad, Kapil, Liu, Zhen, Mingyang, Ma, Myers, Lance, Nigam, Arjun, Popescu, Tudor, Reiner, Victor, Rong, Zijian, Sukarto, Eunice, Villamil, Leonardo Mendez, Wang, Chuanyi, Wang, Napoleon, Yamin, Ajmain, Yu, Jeffery, Yu, Matthew, Zhang, Yuanning, Zhu, Ziye, Zijian, Chen

论文摘要

本文研究了一个积极的整数$ m $,这是由学位元素最多按$ m $ $ $ $ $ $ $ $ $ M $产生的复杂Grassmanians的同类圈。我们以两种方式建立了由于雷纳和延伸导致的sublgebra的希尔伯特系列的猜想。第一个根据$ k $ - 缀合的操作重新诠释了它,这暗示了subgebras的两个猜想基础,这意味着他们的猜想。第二个引入了与拉格朗日格拉曼尼亚人的共同学的类似猜想。

This paper studies, for a positive integer $m$, the subalgebra of the cohomology ring of the complex Grassmannians generated by the elements of degree at most $m$. We build in two ways upon a conjecture for the Hilbert series of this subalgebra due to Reiner and Tudose. The first reinterprets it in terms of the operation of $k$-conjugation, suggesting two conjectural bases for the subalgebras that would imply their conjecture. The second introduces an analogous conjecture for the cohomology of Lagrangian Grassmannians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源