论文标题
爱因斯坦 - 斯卡尔 - 高斯 - 骨网的演变使用改良的谐波公式
Evolution of Einstein-scalar-Gauss-Bonnet gravity using a modified harmonic formulation
论文作者
论文摘要
我们介绍了几个物理兴趣的数值解决方案,包括二进制黑洞合并,在移动对称的爱因斯坦 - 斯卡尔 - 高斯 - 高斯 - 鲍内特(ESGB)重力中,并描述了我们在没有近似时间的情况下求解整个运动方程的方法,用于一般的空间。虽然我们集中于移位对称ESGB的具体示例,但我们的方法(使用最近提出的对广义谐波公式的修改)通常适用于所有Horndeski重力理论(包括一般相对论)。我们证明,这些方法可以稳定地遵循标量云的形成,以实现最初的真空非旋转和旋转黑洞,以实现高斯 - 骨网耦合的值接近最大值,而该理论的超质性在球形对称性中破裂。我们研究了黑洞与标量头发的碰撞,发现该理论在类似的方向上的时空区域与黑洞地平线的外部外观保持双曲线,其中包括在重力辐射中偏离一般相对性的情况。最后,我们证明这些方法可用于遵循完全ESGB重力的二元黑洞的灵感和合并。这允许对强场和非扰动状态中的Horndeski重力理论进行预测,该理论可以与重力波观测面对面,并与对一般相对性的修改进行近似处理。
We present numerical solutions of several spacetimes of physical interest, including binary black hole mergers, in shift-symmetric Einstein-scalar-Gauss-Bonnet (ESGB) gravity, and describe our methods for solving the full equations of motion, without approximation, for general spacetimes. While we concentrate on the specific example of shift-symmetric ESGB, our methods, which make use of a recently proposed modification to the generalized harmonic formulation, should be generally applicable to all Horndeski theories of gravity (including general relativity). We demonstrate that these methods can stably follow the formation of scalar clouds about initially vacuum non-spinning and spinning black holes for values of the Gauss-Bonnet coupling approaching the maximum value above which the hyperbolicity of the theory breaks down in spherical symmetry. We study the collision of black holes with scalar hair, finding that the theory remains hyperbolic in the spacetime region exterior to the black hole horizons in a similar regime, which includes cases where the deviations from general relativity in the gravitational radiation is appreciable. Finally, we demonstrate that these methods can be used to follow the inspiral and merger of binary black holes in full ESGB gravity. This allows for making predictions for Horndeski theories of gravity in the strong-field and non-perturbative regime, which can confronted with gravitational wave observations, and compared to approximate treatments of modifications to general relativity.