论文标题
通过深度学习,来自二进制孔合并的二元孔合并种群的田间聚集分数,共同的包膜效率和球形群集半径的联合约束
Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning
论文作者
论文摘要
第二次重力波瞬时目录(GWTC-2)的最新发布显着增加了已知的GW事件的数量,从而实现了对紧凑型二进制组的形成模型的前所未有的约束。一个紧迫的问题是了解源自不同地层通道的二进制组的比例,例如孤立的恒星簇中的孤立场形成与动态形成。在本文中,我们将$ \ texttt {cosmic} $二进制群体合成套件和$ \ texttt {cmc} $代码用于球形群集进化,以在两个编队场景下为黑洞二进制组合创建混合物模型。这些代码物体首次是自兼而有的,使用$ \ texttt {cmc} $本身使用$ \ texttt {cosmic} $跟踪恒星进化。然后,我们使用深度学习增强的层次贝叶斯分析来限制编队模型之间的混合分数$ f $,同时约束在$ \ texttt {cosmic} $中假设的常见信封效率$α$和初始群集病毒radius radius $ r_v在$ \ textttttttttttttttttt中假设。在有关孤立二进制和球形群集演变的其他不确定方面的特定假设下,我们报告了三个物理参数的中位数和90美元的置信区间$ 90 \%$置信区间$(f,α,r_v)=(0.20^{+0.32} _ { - 0.18},2.26^{+2.65} _ { - 1.84},2.71^{+0.83} _ { - 1.17})$。这种同时的约束与银河系的观察到的特性相符,并且是从GW观测值中学习紧凑型二元形成的天体物理学途径的重要第一步。
The recent release of the second Gravitational-Wave Transient Catalog (GWTC-2) has increased significantly the number of known GW events, enabling unprecedented constraints on formation models of compact binaries. One pressing question is to understand the fraction of binaries originating from different formation channels, such as isolated field formation versus dynamical formation in dense stellar clusters. In this paper, we combine the $\texttt{COSMIC}$ binary population synthesis suite and the $\texttt{CMC}$ code for globular cluster evolution to create a mixture model for black hole binary formation under both formation scenarios. For the first time, these code bodies are combined self-consistently, with $\texttt{CMC}$ itself employing $\texttt{COSMIC}$ to track stellar evolution. We then use a deep-learning enhanced hierarchical Bayesian analysis to constrain the mixture fraction $f$ between formation models, while simultaneously constraining the common envelope efficiency $α$ assumed in $\texttt{COSMIC}$ and the initial cluster virial radius $r_v$ assumed in $\texttt{CMC}$. Under specific assumptions about other uncertain aspects of isolated binary and globular cluster evolution, we report the median and $90\%$ confidence interval of three physical parameters $(f,α,r_v)=(0.20^{+0.32}_{-0.18},2.26^{+2.65}_{-1.84},2.71^{+0.83}_{-1.17})$. This simultaneous constraint agrees with observed properties of globular clusters in the Milky Way and is an important first step in the pathway toward learning astrophysics of compact binary formation from GW observations.