论文标题
使用蒙特卡洛法进行辐射转移方法,用于复杂的几何形状中的肌动量及其在创新的飞行员尺度照片(BIO)反应堆内的盐光解离的应用
Radiative transfer approach using Monte Carlo Method for actinometry in complex geometry and its application to Reinecke salt photodissociation within innovative pilot-scale photo(bio)reactors
论文作者
论文摘要
在本文中,介绍了通过肌动仪估算入射光子通量密度的完整辐射转移方法,该方法为研究大规模增强的光反应器的研究打开了大门。该方法基于原始概念:对反应体积的光子进入反应体积的概率的分析被放线仪吸收。尽管假定这种概率等于经典的阳性仪中的概率,但在许多实际情况下,在光学厚度低的实际情况下,这种假设再也无法满足。在这里,我们通过使用辐射转移蒙特卡洛(Monte Carlo)领域的最新进展来消除这一限制,以便严格评估瞬时吸收概念性概率作为转换的函数。实施是在Edstar进行的,Edstar是一个开源开发环境,可直接使用任何几何形状(由其CAD-File直接提供),并具有相同的蒙特卡洛算法。实验研究的重点是在两个用于研究自然和人工光合作用研究的反应器中的盐盐光解离。研究的第一个反应器用作参考构型:其简单的圆环几何形状允许比较用量子传感器和肌动仪测量的通量密度。验证和分析是在此反应器上进行的。然后,该方法将在25 l的光生反应器上实现,复杂的几何形状对应于一千个光挡的光纤在反应体积内分布入射光子。结果表明,在测量此类反应器的入射通量密度时,经典的辐射转移忽略辐射转移可能会导致50%的误差。最后,我们展示了这种辐射转移方法如何为分析高转化率作为研究入射光子角度分布的平均值铺平道路。
In this article, a complete radiative transfer approach for estimating incident photon flux density by actinometry is presented that opens the door to investigation of large-scale intensified photoreactors. The approach is based on an original concept: the analysis of the probability that a photon entering the reaction volume is absorbed by the actinometer. Whereas this probability is assumed to be equal to one in classical actinometry, this assumption can no longer be satisfied in many practical situations in which optical thicknesses are low. Here we remove this restriction by using most recent advances in the field of radiative transfer Monte Carlo, in order to rigorously evaluate the instantaneous absorption-probability as a function of conversion. Implementation is performed in EDStar, an open-source development environment that enables straightforward simulation of reactors with any geometry (directly provided by their CAD-file), with the very same Monte Carlo algorithm. Experimental investigations are focused on Reinecke salt photodissociation in two reactors designed for the study of natural and artificial photosynthesis. The first reactor investigated serves as reference configuration: its simple torus geometry allows to compare flux densities measured with quantum sensors and actinometry. Validations and analysis are carried out on this reactor. Then, the approach is implemented on a 25 L photobioreactor with complex geometry corresponding to one thousand light-diffusing optical fibers distributing incident photons within the reaction volume. Results show that classical actinometry neglecting radiative transfer can lead to 50 percent error when measuring incident flux density for such reactors. Finally, we show how this radiative transfer approach paves the way for analyzing high conversion as a mean to investigate angular distribution of incident photons.