论文标题
50-87 MHz范围内银河前景发射的光谱指数
Spectral index of the Galactic foreground emission in the 50-87 MHz range
论文作者
论文摘要
具有单个仪表波天线的总功率辐射测定法是一种潜在的有效方法来研究宇宙黎明($ Z \ sim20 $),这是通过测量中性氢的$ 21 $ 〜cm过渡产生的天空亮度,但可以从更强大的银河系和外层面前景中解散。在此过程中,测得的综合天空亮度温度的光谱可用于量化前景发射特性。在这项工作中,我们分析了来自大型实验的数据子集,以检测到$ 50-87 $ 〜MHz范围内的黑暗时代(Leda),并限制了北天天空中北天的前景光谱指数$β$从中期可见。我们专注于两个Zenith指导的Leda辐射仪,并研究$β$的估计如何随局部恒星时间(LST)而变化。我们纠正增益模式色的影响,并将估计的绝对温度与模拟进行比较。我们开发了一个参考数据集,该数据集由14天的最佳条件观测值组成。使用此数据集,我们估计,对于一个辐射计,$β$从LST〜 $ <6 $ 〜h的$ -2.55 $到LST〜 $ \ sim13 $ 〜h的陡峭$ -2.58 $,与天空型号和先前的南部天空测量值一致。但是,在LST〜 $ = 13-24 $ 〜h范围内,我们发现$β$在$ -2.55 $和$ -2.61 $之间波动(数据散布$ \ sim0.01 $)。我们观察到第二个辐射计的$β$与LST趋势相似,尽管$ -2.46 <β<-2.43 $范围略小,但较小的$ |β| $,超过$ 24 $ 〜lst(数据散布$ \ sim0.02 $)。结合了在2018年中至2019年中期的扩展活动期间收集的所有数据,并专注于LST〜 $ = 9-12.5 $ 〜H范围,我们推断出良好的仪器稳定性,并找到$ -2.56 <β<-2.50 $,$ 0.09 <Δβ<δβ<0.12 $。
Total-power radiometry with individual meter-wave antennas is a potentially effective way to study the Cosmic Dawn ($z\sim20$) through measurement of sky brightness arising from the $21$~cm transition of neutral hydrogen, provided this can be disentangled from much stronger Galactic and extra-galactic foregrounds. In the process, measured spectra of integrated sky brightness temperature can be used to quantify the foreground emission properties. In this work, we analyze a subset of data from the Large-aperture Experiment to Detect the Dark Age (LEDA) in the range $50-87$~MHz and constrain the foreground spectral index $β$ in the northern sky visible from mid-latitudes. We focus on two zenith-directed LEDA radiometers and study how estimates of $β$ vary with local sidereal time (LST). We correct for the effect of gain pattern chromaticity and compare estimated absolute temperatures with simulations. We develop a reference dataset consisting of 14 days of optimal condition observations. Using this dataset we estimate, for one radiometer, that $β$ varies from $-2.55$ at LST~$<6$~h to a steeper $-2.58$ at LST~$\sim13$~h, consistently with sky models and previous southern sky measurements. In the LST~$=13-24$~h range, however, we find that $β$ fluctuates between $-2.55$ and $-2.61$ (data scatter $\sim0.01$). We observe a similar $β$ vs. LST trend for the second radiometer, although with slightly smaller $|β|$, in the $-2.46<β<-2.43$ range, over $24$~h of LST (data scatter $\sim0.02$). Combining all data gathered during the extended campaign between mid-2018 to mid-2019, and focusing on the LST~$=9-12.5$~h range, we infer good instrument stability and find $-2.56<β<-2.50$ with $0.09<Δβ<0.12$.