论文标题
关于广义仿生硕士切片的某些特性的注意
Note on some properties of generalized affine Grassmannian slices
论文作者
论文摘要
Braverman,Finkelberg和Nakajima引入了广义的仿型Grassmannian Slices $ \ Overline {\ Mathcal W}^λ_μ$,并表明它们是$ 3D $ $ \ MATHCAL n = 4 $ GAUGE理论的库仑分支。我们证明了他们的猜想是,$ \ Mathcal w^ν_μ$在$ \ overline {\ Mathcal w}^λ_μ$中的横向切片是等词至$ \ edimolphic to $ \ overline {\ Mathcal w}^λ_ν$。此外,他们猜想库仑分支为$ 3D $ $ \ MATHCAL n = 4 $量学理论具有符合性的奇异性,我们确认了这个猜想,用于广义仿生的Grassmannian slices $ \ edline {\ Mathcal W}^λ_μ$。在此过程中,我们提供了$ \ Mathcal W^ν_μ$平滑度的新证据,Muthiah和Weekes先前使用不同的方法证明了这一点。
Braverman, Finkelberg and Nakajima introduced the generalized affine Grassmannian slices $\overline{\mathcal W}^λ_μ$ and showed that they are Coulomb branches of $3d$ $\mathcal N=4$ gauge theories. We prove a conjecture of theirs that a transversal slice of $\mathcal W^ν_μ$ in $\overline{\mathcal W}^λ_μ$ is isomorphic to $\overline{\mathcal W}^λ_ν$. In addition, they conjecture that Coulomb branches of $3d$ $\mathcal N=4$ gauge theories have symplectic singularities, and we confirm this conjecture for generalized affine Grassmannian slices $\overline{\mathcal W}^λ_μ$. Along the way we give a new proof of the smoothness of $\mathcal W^ν_μ$, which has been previously proven by Muthiah and Weekes using different method.