论文标题
基于阶段的DOA估计的有效培训数据生成
Efficient Training Data Generation for Phase-Based DOA Estimation
论文作者
论文摘要
基于深度学习(DL)的到达方向(DOA)估计是一个积极的研究主题,目前代表了最新的研究。通常,基于DL的DOA估计器会经过记录的数据或计算昂贵的数据培训。两种数据类型都需要大量的存储空间和过多的时间来记录或生成。我们提出了一种低复杂性在线数据生成方法,以训练具有基于阶段的功能输入的DL模型。数据生成方法通过采用直接路径的确定性模型和室内转移功能的晚回响的统计模型来对频域中麦克风信号的阶段进行建模。通过使用来自测量房间脉冲响应的数据进行评估,我们证明了一个用建议的培训数据生成方法训练的模型与基于源图像方法生成的数据训练的模型相当。
Deep learning (DL) based direction of arrival (DOA) estimation is an active research topic and currently represents the state-of-the-art. Usually, DL-based DOA estimators are trained with recorded data or computationally expensive generated data. Both data types require significant storage and excessive time to, respectively, record or generate. We propose a low complexity online data generation method to train DL models with a phase-based feature input. The data generation method models the phases of the microphone signals in the frequency domain by employing a deterministic model for the direct path and a statistical model for the late reverberation of the room transfer function. By an evaluation using data from measured room impulse responses, we demonstrate that a model trained with the proposed training data generation method performs comparably to models trained with data generated based on the source-image method.