论文标题
纳米antennas设计用于交流的设计:材料选择和性能增强
Nanoantennas Design for THz Communication: Material Selection and Performance Enhancement
论文作者
论文摘要
在Terahertz(THZ)通信系统的开发中,纳米反滕纳是最重要的组成部分。尤其是,重点是设计高指令的天线,因为它通过补偿THZ处的大路径损失并因此提高了信噪比的比率来提高整体系统的性能。本文介绍了适用于纳米安妮娜设计的材料,以及其在THZ Communications的性能方面的进步。铜,石墨烯和碳纳米管材料被用作有前途的纳米植物设计候选物。通过分析THZ材料的性质和行为来实现纳米antennas的性能。结果表明,石墨烯纳米反酮在微型化,方向性和辐射效率方面提供了更好的性能。此外,通过使用电场效应通过石墨烯的化学电位动态调节表面电势来研究THZ纳米坦纳的性能增强。在高微型化,高方向性,低反射,频率重新配置和稳定阻抗方面,纳米annna的性能得到了增强。使用石墨烯的THZ纳米antennas有可能用于THZ通信系统。鉴于智能THZ无线环境;本文最终使用石墨烯元原子呈现了THZ超表面。用户端的石墨烯纳米antennas和环境侧石墨烯高表面可以建立一个有希望的智能THZ无线环境。
In the development of terahertz (THz) communication systems, the nanoantenna is the most significant component. Especially, the focus is to design highly directive antennas, because it enhances the performance of the overall system by compensating the large path loss at THz and thus improves the signal-to-noise ratio. This paper presents suitable material for nanoantenna design and the advancement in their performance for THz communications. Copper, Graphene, and carbon nanotube materials are used as promising candidates for nanoantenna design. The performance of nanoantennas is carried out by analyzing the properties and behavior of the material at THz. Results show that the Graphene nanoantenna provides better performance in terms of miniaturization, directivity, and radiation efficiency. Further, the performance enhancement of the nanoantenna at THz is studied by dynamically adjusting the surface conductivity via the chemical potential of Graphene using the electric field effect. The performance of the nanoantenna is enhanced in terms of high miniaturization, high directivity, low reflection, frequency reconfiguration, and stable impedance. The THz nanoantennas using Graphene have the potential to be used for THz communication systems. In view of the smart THz wireless environment; this paper finally presents a THz Hypersurface using Graphene meta-atoms. The user-side Graphene nanoantennas and environment-side Graphene Hypersurface can build a promising smart THz wireless environment.