论文标题

估计可归因的分数时处理时间依赖性的暴露和混杂因素 - 弥合多层和反事实建模之间的差距

Handling time-dependent exposures and confounders when estimating attributable fractions -- bridging the gap between multistate and counterfactual modeling

论文作者

Steen, Johan, Morzywolek, Pawel, Van Biesen, Wim, Decruyenaere, Johan, Vansteelandt, Stijn

论文摘要

人口征收的分数(PAF)表示可以归因于某个人群的一定暴露的事件的比例。由于暴露率或多余的风险可能会随着时间的流逝而改变,因此可能非常依赖时间。竞争事件可能会阻碍感兴趣的结果。这两个事件中的任何一个都可以防止利息暴露。因此,估算方法需要仔细考虑这种高度动态设置中事件的时机。人们普遍鼓励使用多层模型,以消除可预防但常见的时间依赖性偏差类型。即便如此,已经指出,提出的用于PAF估计的多层建模方法无法完全消除这种偏见。此外,评估患者是否死于一定的暴露,不仅需要对事件的时机进行足够的建模,还需要对他们的混杂因素进行充分的建模。虽然提出的用于混淆调整的多层建模方法可以充分适应基线失衡,但与G方法不同,这些建议通常不具备处理时间依赖的混杂。但是,多立材建模与G方法之间的连接(例如,对PAF估计的审查权重的逆概率)并不容易显而易见。在本文中,我们提供了两种方法的基于加权的表征,以说明这种连接,以查明多层建模的当前缺点,并将直觉增强为简单的修改以克服这些方法。 R代码可用于促进G-Methods的摄取以进行PAF估计。

The population-attributable fraction (PAF) expresses the proportion of events that can be ascribed to a certain exposure in a certain population. It can be strongly time-dependent because either exposure incidence or excess risk may change over time. Competing events may moreover hinder the outcome of interest from being observed. Occurrence of either of these events may, in turn, prevent the exposure of interest. Estimation approaches therefore need to carefully account for the timing of events in such highly dynamic settings. The use of multistate models has been widely encouraged to eliminate preventable yet common types of time-dependent bias. Even so, it has been pointed out that proposed multistate modeling approaches for PAF estimation fail to fully eliminate such bias. In addition, assessing whether patients die from rather than with a certain exposure not only requires adequate modeling of the timing of events but also of their confounding factors. While proposed multistate modeling approaches for confounding adjustment may adequately accommodate baseline imbalances, unlike g-methods, these proposals are not generally equipped to handle time-dependent confounding. However, the connection between multistate modeling and g-methods (e.g. inverse probability of censoring weighting) for PAF estimation is not readily apparent. In this paper, we provide a weighting-based characterization of both approaches to illustrate this connection, to pinpoint current shortcomings of multistate modeling, and to enhance intuition into simple modifications to overcome these. R code is made available to foster the uptake of g-methods for PAF estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源