论文标题

基于吸收的基于等离子体量子元面的钻石自旋显微镜

Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum Metasurface

论文作者

Kim, Laura, Choi, Hyeongrak, Trusheim, Matthew, Englund, Dirk

论文摘要

通过光学检测到的磁共振(ODMR),钻石中心的氮空位(NV)中心已成为领先的量子传感器平台。由于基于荧光的ODMR技术受到低光子收集效率和调制对比度的限制,因此对NV SINGLET状态过渡的基于红外(IR)吸收(IR)吸收的读数越来越兴趣。 IR读数可以提高对比度和收集效率,但由于NV单线状态的吸收横截面较小,因此迄今已限于散装样品中的长路径几何形状。在这里,我们通过引入一个谐振钻石金属纤维层的质量因子Q 〜1,000来扩大IR吸收。这种“等离子体量子传感跨表面”(PQSM)将局部的表面等离子体极性共振与远距离雷利木木异常模式结合在一起,并实现了现场定位和感应体积之间所需的平衡,以优化自旋读取敏感性。从组合的电磁和速率方程建模中,我们使用当今NV钻石样品和制造技术的数字估计了低于1 nt/hz $^{1/hz $^{1/2} $的感应区域的灵敏度。所提出的PQSM可以在自旋 - 预测 - 毫米限制的灵敏度附近使用红外读数进行一种新形式的微观ODMR传感,从而使其对最苛刻的应用(例如通过散射组织和空间分辨的化学NMR检测)具有吸引力。

Nitrogen vacancy (NV) centers in diamond have emerged as a leading quantum sensor platform, combining exceptional sensitivity with nanoscale spatial resolution by optically detected magnetic resonance (ODMR). Because fluorescence-based ODMR techniques are limited by low photon collection efficiency and modulation contrast, there has been growing interest in infrared (IR)-absorption-based readout of the NV singlet state transition. IR readout can improve contrast and collection efficiency, but it has thus far been limited to long-pathlength geometries in bulk samples due to the small absorption cross section of the NV singlet state. Here, we amplify the IR absorption by introducing a resonant diamond metallodielectric metasurface that achieves a quality factor of Q ~ 1,000. This "plasmonic quantum sensing metasurface" (PQSM) combines localized surface plasmon polariton resonances with long-range Rayleigh-Wood anomaly modes and achieves the desired balance between field localization and sensing volume to optimize spin readout sensitivity. From combined electromagnetic and rate-equation modeling, we estimate a sensitivity below 1 nT/Hz$^{1/2}$ per um$^2$ of sensing area using numbers for present-day NV diamond samples and fabrication techniques. The proposed PQSM enables a new form of microscopic ODMR sensing with infrared readout near the spin-projection-noise-limited sensitivity, making it appealing for the most demanding applications such as imaging through scattering tissue and spatially-resolved chemical NMR detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源