论文标题
分子状态来自$ d^{(*)} \ bar {d}^{(*)}/b^{(*)} \ bar {b}^{(*)} $ and $ d^{(*)} d^{(*)} d^{(*)
Molecular states from $D^{(*)}\bar{D}^{(*)}/B^{(*)}\bar{B}^{(*)}$ and $D^{(*)}D^{(*)}/\bar{B}^{(*)}\bar{B}^{(*)}$ interactions
论文作者
论文摘要
在这项工作中,我们对$ d^{(*)} \ bar {d}^{(*)}/b^{(*)} \ bar {b}^{(*)^{(*)} $进行了系统调查。 $ d^{(*)} d^{(*)}/\ bar {b}^{(*)} \ bar {b}^{(*)} $互动在Quasiptential bethe bethe-salpeter方程(qbse)方法中。在带有重夸克和手性对称性的拉格朗日人的帮助下,在一次性验证模型中构建了互动电位,其中我们包括$π$,$η$,$ρ$,$ω$和$σ$交易所,以及$ j/ψ$或$购$ Exchange。从所考虑的相互作用中可能遇到的结合状态被搜索为散射幅度的极点。结果表明,实验观察到的状态,$ z_c(3900)$,$ z_c(4020)$,$ z_b(10610)$和$ z_b(10650)$,可能与$ d \ bar {d}^}^{*}^{*} $ b^*\ bar {b}^{*} $与量子数字$ i^g(j^p)= 1^+(1^{+})$的交互。 $ d \ bar {d}^{*} $交互也足以产生与$ 0^+(0^+)$的极点,这与$ x(3872)$有关。在相同的理论框架内,预测$ d \ bar {d} $和$ b \ bar {b} $具有$ 0(0^+)$的分子状态。计算也建议$ 0(0^+,1^+,2^+)$和$ 1(0^+)$及其底部合作伙伴的可能$ d^*\ bar {d}^*$分子状态。在双重繁重的部门中,从$ dd/\ bar {b} \ bar {b} $相互作用从$ 0(1^+)$从$ dd^*/\ bar {b} \ bar {b} \ bar {b}^*$相互作用发现绑定状态时,无界状态。 $ d^*d^*/\ bar {b}^*\ bar {b}^*$交互产生三个分子状态,$ 0(1^+)$,$ 0(2^+)$和$ 1(2^+)$。
In this work, we preform a systematic investigation about hidden heavy and doubly heavy molecular states from the $D^{(*)}\bar{D}^{(*)}/B^{(*)}\bar{B}^{(*)}$ and $D^{(*)}D^{(*)}/\bar{B}^{(*)}\bar{B}^{(*)}$ interactions in the quasipotential Bethe-Salpeter equation (qBSE) approach. With the help of Lagrangians with heavy quark and chiral symmetries, interaction potentials are constructed within the one-boson-exchange model in which we include the $π$, $η$, $ρ$, $ω$ and $σ$ exchanges, as well as $J/ψ$ or $Υ$ exchange. Possible bound states from the interactions considered are searched for as the pole of scattering amplitude. The results suggest that experimentally observed states, $Z_c(3900)$, $Z_c(4020)$, $Z_b(10610)$, and $Z_b(10650)$, can be related to the $D\bar{D}^{*}$, $D^*\bar{D}^{*}$, $B\bar{B}^{*}$, and $B^*\bar{B}^{*}$ interactions with quantum numbers $I^G(J^P)=1^+(1^{+})$, respectively. The $D\bar{D}^{*}$ interaction is also attractive enough to produce a pole with $0^+(0^+)$ which is related to the $X(3872)$. Within the same theoretical frame, the existence of $D\bar{D}$ and $B\bar{B}$ molecular states with $0(0^+)$ are predicted. The possible $D^*\bar{D}^*$ molecular states with $0(0^+, 1^+, 2^+)$ and $1(0^+)$ and their bottom partners are also suggested by the calculation. In the doubly heavy sector, no bound state is produced from the $DD/\bar{B}\bar{B}$ interaction while a bound state is found with $0(1^+)$ from $DD^*/\bar{B}\bar{B}^*$ interaction. The $D^*D^*/\bar{B}^*\bar{B}^*$ interaction produces three molecular states with $0(1^+)$, $0(2^+)$ and $1(2^+)$.