论文标题
移动的几何量化
Shifted geometric quantization
论文作者
论文摘要
我们在移动的符号结构的设置中介绍了几何量化。我们定义了Lagrangian的纤维纤维和移位的互合堆及其几何量化的前量。此外,我们研究了许多示例,包括符号型组,汉密尔顿空间和平坦连接的模量空间。在汉密尔顿空间的情况下,我们证明了“减少量化通勤”原理的类似物。
We introduce geometric quantization in the setting of shifted symplectic structures. We define Lagrangian fibrations and prequantizations of shifted symplectic stacks and their geometric quantization. In addition, we study many examples including symplectic groupoids, Hamiltonian spaces and moduli spaces of flat connections. In the case of Hamiltonian spaces we prove a derived analog of the "quantization commutes with reduction" principle.