论文标题

I-Bot:基于干扰的动态不受管理边缘计算任务的编排

I-BOT: Interference-Based Orchestration of Tasks for Dynamic Unmanaged Edge Computing

论文作者

Suryavansh, Shikhar, Bothra, Chandan, Kim, Kwang Taik, Chiang, Mung, Peng, Chunyi, Bagchi, Saurabh

论文摘要

近年来,Edge Computing已成为对延迟敏感应用(例如面部识别和增强现实)的流行选择,因为与云相比,它更接近最终用户。尽管基础架构提供商正在努力创建托管边缘网络,但是可以广泛使用且未充分利用的笔记本电脑和平板电脑等个人设备也可以用作潜在的边缘设备。我们称此类设备不受管理的边缘设备(UEDS)。在此不受管理的边缘系统上安排应用程序任务并不直接,因为UED的计算能力的三个基本原因 - 近地点,UED的可用性(由于设备离开系统)以及多个任务之间的干扰。在本文中,我们提出了I-Bot,这是一种基于干扰的编排方案,用于对无管理的边缘平台(UEP)上的延迟敏感任务。它可以最大程度地减少应用程序的完成时间,并且具有带宽的效率。 I-Bot带来了三项创新。首先,它介绍并预测任务的干扰模式以做出调度决策。其次,它使用一种反馈机制来调整UED的计算能力的变化以及一种处理其零星出口的预测机制。第三,它说明任务在计划决策中的输入依赖性(例如,两个任务需要相同的输入数据)。为了评估I-Bot,我们使用代表由多个任务组成的自动驾驶的应用程序运行端到端模拟。我们将两个基本基准(随机和圆形旋转)和两个最先进的基线[Lavea [Sec-2017]和Petrel [MSN-2018]进行比较。与这些基准相比,I-Bot大大减少了应用程序任务的平均服务时间。在动态异质环境中,这种降低更为明显,在UEP中情况就是如此。

In recent years, edge computing has become a popular choice for latency-sensitive applications like facial recognition and augmented reality because it is closer to the end users compared to the cloud. Although infrastructure providers are working toward creating managed edge networks, personal devices such as laptops and tablets, which are widely available and are underutilized, can also be used as potential edge devices. We call such devices Unmanaged Edge Devices (UEDs). Scheduling application tasks on such an unmanaged edge system is not straightforward because of three fundamental reasons-heterogeneity in the computational capacity of the UEDs, uncertainty in the availability of the UEDs (due to devices leaving the system), and interference among multiple tasks sharing a UED. In this paper, we present I-BOT, an interference-based orchestration scheme for latency-sensitive tasks on an Unmanaged Edge Platform (UEP). It minimizes the completion time of applications and is bandwidth efficient. I-BOT brings forth three innovations. First, it profiles and predicts the interference patterns of the tasks to make scheduling decisions. Second, it uses a feedback mechanism to adjust for changes in the computational capacity of the UEDs and a prediction mechanism to handle their sporadic exits. Third, it accounts for input dependence of tasks in its scheduling decision (such as, two tasks requiring the same input data). To evaluate I-BOT, we run end-to-end simulations with applications representing autonomous driving, composed of multiple tasks. We compare to two basic baselines (random and round-robin) and two state-of-the-arts, Lavea [SEC-2017] and Petrel [MSN-2018]. Compared to these baselines, I-BOT significantly reduces the average service time of application tasks. This reduction is more pronounced in dynamic heterogeneous environments, which would be the case in a UEP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源