论文标题

在非交互式差异隐私模型中,经验风险最小化

Empirical Risk Minimization in the Non-interactive Local Model of Differential Privacy

论文作者

Wang, Di, Gaboardi, Marco, Smith, Adam, Xu, Jinhui

论文摘要

在本文中,我们研究了非交互性局部差异隐私(LDP)模型中的经验风险最小化(ERM)问题。先前对此问题的研究\ citep {Smith2017interaction}表明,要达到错误$α$,样本复杂性需要根据一般损失功能的维度$ p $成倍指数级指数。在本文中,我们通过调查损失功能的条件,使我们能够消除这种限制,从而解决了这一问题。在我们的第一次尝试中,我们表明,如果损失函数为$(\ infty,t)$ - 平滑,通过使用Bernstein多项式近似,我们可以避免在$α$的任期内避免指数依赖性。然后,我们建议使用$ 1 $ bit的通信复杂性和$ O(1)$计算成本的播放器算法。这些算法的误差与原始算法相同。有了一些其他假设,我们还提供了一种对服务器更有效的算法。在我们的第二次尝试中,我们表明,对于任何$ 1 $ lipschitz的广义线性凸损失函数,有一个$(ε,δ)$ -LDP算法,其用于实现错误$α$的样本复杂性$α$仅在尺寸$ p $中是线性的。我们的结果使用内部产品近似技术的多项式。最后,以使用多项式近似的想法并基于不同类型的多项式近似的想法,我们提出了(有效的)非交互性局部差异性私有算法来学习K-Way边缘查询集和平滑查询集。

In this paper, we study the Empirical Risk Minimization (ERM) problem in the non-interactive Local Differential Privacy (LDP) model. Previous research on this problem \citep{smith2017interaction} indicates that the sample complexity, to achieve error $α$, needs to be exponentially depending on the dimensionality $p$ for general loss functions. In this paper, we make two attempts to resolve this issue by investigating conditions on the loss functions that allow us to remove such a limit. In our first attempt, we show that if the loss function is $(\infty, T)$-smooth, by using the Bernstein polynomial approximation we can avoid the exponential dependency in the term of $α$. We then propose player-efficient algorithms with $1$-bit communication complexity and $O(1)$ computation cost for each player. The error bound of these algorithms is asymptotically the same as the original one. With some additional assumptions, we also give an algorithm which is more efficient for the server. In our second attempt, we show that for any $1$-Lipschitz generalized linear convex loss function, there is an $(ε, δ)$-LDP algorithm whose sample complexity for achieving error $α$ is only linear in the dimensionality $p$. Our results use a polynomial of inner product approximation technique. Finally, motivated by the idea of using polynomial approximation and based on different types of polynomial approximations, we propose (efficient) non-interactive locally differentially private algorithms for learning the set of k-way marginal queries and the set of smooth queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源