论文标题
世界上最大的超音速湍流模拟揭示了声音量表
The sonic scale revealed by the world's largest supersonic turbulence simulation
论文作者
论文摘要
了解湍流的物理学对于许多应用,包括天气,工业和天体物理学至关重要。在星际介质(ISM)中,超音速湍流在控制气体密度和速度结构以及最终恒星的诞生中起着至关重要的作用。在这里,我们提出了以10048^3个单元格的网格分辨率进行星际湍流的模拟,这使我们能够确定Sonic尺度(L_S)的位置和宽度 - 从超音速到亚音速湍流的过渡。模拟同时解析了超音速和亚音速级联反应,V(l)〜l^p,我们分别测量p_sup = 0.49 +/- 0.01和p_sub = 0.39 +/- 0.02。我们发现L_S与关系L_S / L = Phi_s Mach^(-1 / p_sup)一致,其中Mach是三维的MACH数,L是湍流的驱动量表或分子云的直径。如果L是驾驶量表,我们测量PHI_S = 0.42(+0.12)(-0.09),主要是因为驾驶量表与超音速级联的开始之间的分离。对于超出云量表的超音速级联反应,我们获得phi_s = 0.91(+0.25)(-0.20)。在这两种情况下,Phi_s <1,因为我们发现超音速级联反应在比例为3倍的情况下平稳到亚音速级联反应,而不是急剧的过渡。我们的测量结果为分子云中的湍流调节模型和恒星形成提供了定量输入。
Understanding the physics of turbulence is crucial for many applications, including weather, industry, and astrophysics. In the interstellar medium (ISM), supersonic turbulence plays a crucial role in controlling the gas density and velocity structure, and ultimately the birth of stars. Here we present a simulation of interstellar turbulence with a grid resolution of 10048^3 cells that allows us to determine the position and width of the sonic scale (l_s) - the transition from supersonic to subsonic turbulence. The simulation simultaneously resolves the supersonic and subsonic cascade, v(l) ~ l^p, where we measure p_sup = 0.49 +/- 0.01 and p_sub = 0.39 +/- 0.02, respectively. We find that l_s agrees with the relation l_s / L = phi_s Mach^(-1/p_sup), where Mach is the three-dimensional Mach number, and L is either the driving scale of turbulence or the diameter of a molecular cloud. If L is the driving scale, we measure phi_s = 0.42 (+0.12) (-0.09), primarily because of the separation between the driving scale and the start of the supersonic cascade. For a supersonic cascade extending beyond the cloud scale, we get phi_s = 0.91 (+0.25) (-0.20). In both cases, phi_s < 1, because we find that the supersonic cascade transitions smoothly to the subsonic cascade over a factor of 3 in scale, instead of a sharp transition. Our measurements provide quantitative input for turbulence-regulated models of filament structure and star formation in molecular clouds.