论文标题
多项式环的非招牌和非co型自动形态
A non-tame and non-co-tame automorphism of the polynomial ring
论文作者
论文摘要
如果$ n $变量在特征零字段中以$ n $变量为单位的$ f $ f $ f $ f $ f $ and offine aturemormorphism产生的多项式环的亚组,则据说是{\ it iT co-tame}。存在许多这样的$ F $的例子,并且已经知道了几个足够的共同陈述条件。在2015年,EDO-LEWIS给出了非关键自动形态的第一个例子,这是三个变量中多项式环的驯服自动形态。在本文中,我们给出了一个非驯服的非典型自动形态的示例。当$ n = 3 $作为排名第三的本地nilpotent派生的指数自动形态时,我们构建了一个示例。
An automorphism $F$ of the polynomial ring in $n$ variables over a field of characteristic zero is said to be {\it co-tame} if the subgroup of the automorphism group of the polynomial ring generated by $F$ and affine automorphisms contains the tame subgroup. There exist many examples of such an $F$, and several sufficient conditions for co-tameness are already known. In 2015, Edo-Lewis gave the first example of a non-cotame automorphism, which is a tame automorphism of the polynomial ring in three variables. In this paper, we give the first example of a non-cotame automorphism which is not tame. We construct such an example when $n=3$ as the exponential automorphism of a locally nilpotent derivation of rank three.