论文标题
多视图动态异质信息网络嵌入
Multi-View Dynamic Heterogeneous Information Network Embedding
论文作者
论文摘要
大多数现有的异质信息网络(HIN)嵌入方法集中在静态环境上,同时忽略了现实世界网络的不断发展的特征。尽管已经提出了几种动态嵌入方法,但它们仅是为均匀网络设计的,不能直接应用于异质环境。为了应对上述挑战,我们提出了一个新颖的框架,将时间信息纳入HIN嵌入中,表示为多视图动态HIN嵌入(MDHNE),该框架可以有效地保留从不同视图中更新节点表示的不同视图中隐性关系的演化模式。我们首先将HIN转换为与不同视图相对应的一系列同质网络。然后,我们提出的MDHNE应用了复发性神经网络(RNN),将复杂网络结构的不断发展的模式和节点之间的语义关系纳入潜在的嵌入空间中,因此,当Hin随着时间的推移会随着时间的推移而演变,可以学习和更新来自多个视图的节点表示。此外,我们提出了一种基于注意力的融合机制,该机制可以自动推断出与不同挖掘任务的目标函数相对应的潜在表示的权重。广泛的实验清楚地表明,我们的MDHNE模型在三个现实世界中的动态数据集上优于针对不同网络挖掘任务的最先进的基线。
Most existing Heterogeneous Information Network (HIN) embedding methods focus on static environments while neglecting the evolving characteristic of realworld networks. Although several dynamic embedding methods have been proposed, they are merely designed for homogeneous networks and cannot be directly applied in heterogeneous environment. To tackle above challenges, we propose a novel framework for incorporating temporal information into HIN embedding, denoted as Multi-View Dynamic HIN Embedding (MDHNE), which can efficiently preserve evolution patterns of implicit relationships from different views in updating node representations over time. We first transform HIN to a series of homogeneous networks corresponding to different views. Then our proposed MDHNE applies Recurrent Neural Network (RNN) to incorporate evolving pattern of complex network structure and semantic relationships between nodes into latent embedding spaces, and thus the node representations from multiple views can be learned and updated when HIN evolves over time. Moreover, we come up with an attention based fusion mechanism, which can automatically infer weights of latent representations corresponding to different views by minimizing the objective function specific for different mining tasks. Extensive experiments clearly demonstrate that our MDHNE model outperforms state-of-the-art baselines on three real-world dynamic datasets for different network mining tasks.