论文标题

矩阵事件图的分析复制数据类型

Analysis of the Matrix Event Graph Replicated Data Type

论文作者

Jacob, Florian, Beer, Carolin, Henze, Norbert, Hartenstein, Hannes

论文摘要

Matrix是一种新型的分散,基于主题的出版物订阅中间件,用于通信和数据存储,尤其是作为安全即时消息传递的基础。与传统的分散通信系统相比,矩阵用复制的数据结构代替了纯消息传递。我们提取并调用矩阵事件图(MEG)的数据结构描绘了消息的因果历史。我们表明,该MEG代表了基于出版物订阅事件的因果历史的一般分散应用程序的有趣而重要的复制数据类型:我们表明,MEG在一致性,拜占庭式攻击者和可伸缩性方面具有强大的特性。首先,我们证明MEG提供了强大的最终一致性(SEC),并且可以通过证明MEG是因果历史的无冲突复制数据类型,从而在分区下可用。正如著名的CAP定理所表明的那样,尽管在这里不可能强大的一致性,但SEC是最著名的可实现的权衡。其次,我们讨论拜占庭攻击者对数据类型属性的含义。我们注意到,MEG并没有努力达成共识,因此可以应对$ n> f $ noverments,其中$ n $ n $参与者,其中$ f $显示拜占庭的故障。此外,我们分析可伸缩性:使用马尔可夫链,我们研究了MEG的宽度,被定义为前肢的数量,随着时间的流逝,并观察到几乎最佳的演化。我们猜想,这种特性是在空间上不均匀的随机步行所固有的。

Matrix is a new kind of decentralized, topic-based publish-subscribe middleware for communication and data storage that is getting popular particularly as a basis for secure instant messaging. In comparison to traditional decentralized communication systems, Matrix replaces pure message passing with a replicated data structure. This data structure, which we extract and call the Matrix Event Graph (MEG), depicts the causal history of messages. We show that this MEG represents an interesting and important replicated data type for general decentralized applications that are based on causal histories of publish-subscribe events: we show that a MEG possesses strong properties with respect to consistency, byzantine attackers, and scalability. First, we show that the MEG provides Strong Eventual Consistency (SEC), and that it is available under partition, by proving that the MEG is a Conflict-Free Replicated Data Type for causal histories. While strong consistency is impossible here as shown by the famous CAP theorem, SEC is among the best known achievable trade-offs. Second, we discuss the implications of byzantine attackers on the data type's properties. We note that the MEG, as it does not strive for consensus, can cope with $n > f$ environments with $n$ total participants of which $f$ show byzantine faults. Furthermore, we analyze scalability: Using Markov chains we study the width of the MEG, defined as the number of forward extremities, over time and observe an almost optimal evolution. We conjecture that this property is inherent to the underlying spatially inhomogeneous random walk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源