论文标题

高Z光盘中巨型团块的性质:模拟和观察的深度学习比较

The nature of giant clumps in high-z discs: a deep-learning comparison of simulations and observations

论文作者

Ginzburg, Omri, Huertas-Company, Marc, Dekel, Avishai, Mandelker, Nir, Snyder, Gregory, Ceverino, Daniel, Primack, Joel

论文摘要

我们使用深度学习来探索高红色椎间盘星系中观察到的巨型团块的性质,基于它们在宇宙学模拟中的识别和分类。使用$ \ sim \!\!\!\! 25 \ \!\ rm {pc} $最大分辨率,以$ 1 \!<\!z \!<\!3 $定位主序列星系。这些团块被分类为基于模拟中的寿命的长寿命集团(LLC)或短寿命集团(SLC)。然后,我们训练神经网络,以模拟,多色,尘土和嘈杂的HST样图像来检测和分类模拟的团块。使用编码器卷积神经网络(CNN)检测团块,并根据其使用香草CNN的寿命对其进行分类。使用模拟的测试显示我们的检测器和分类器为$ \ sim80 \%$完整和$ \ sim80 \%$ pure,用于团块比$ \ sim10^{7.5} \ rm {m_ \ odot} $更大。当应用于烛台/货物S+N场中的观察到的星系时,我们发现两种类型的团块都出现在模拟和观测中的相似丰度中。 LLC平均比SLC比SLC $ \ sim 0.5 \ \ rm {dex} $更大,它们在$ M _ {\ rm C} \ gtrsim 10^{7.6} {7.6} \ \ rm {m_ \ odot} $上占主导地位。 LLC倾向于发现靠近银河系中心,表明团块迁移到中心或在较小的半径处的优先形成。发现LLC居住在高质量星系中,这表明在那里的超新星反馈下,由于团块在这些星系中的质量较大,因此在那里的超新星反馈中的可生存能力更好。我们在模拟和观察值中找到集团属性,以在$ \ sim \! 2 $。

We use deep learning to explore the nature of observed giant clumps in high-redshift disc galaxies, based on their identification and classification in cosmological simulations. Simulated clumps are detected using the 3D gas and stellar densities in the VELA zoom-in cosmological simulation suite, with $\sim \!\! 25\ \!\rm{pc}$ maximum resolution, targeting main sequence galaxies at $1\!<\!z\!<\!3$. The clumps are classified as long-lived clumps (LLCs) or short-lived clumps (SLCs) based on their longevity in the simulations. We then train neural networks to detect and classify the simulated clumps in mock, multi-color, dusty and noisy HST-like images. The clumps are detected using an encoder-decoder convolutional neural network (CNN), and are classified according to their longevity using a vanilla CNN. Tests using the simulations show our detector and classifier to be $\sim80\%$ complete and $\sim80\%$ pure for clumps more massive than $\sim10^{7.5}\rm{M_\odot}$. When applied to observed galaxies in the CANDELS/GOODS S+N fields, we find both types of clumps to appear in similar abundances in the simulations and the observations. LLCs are, on average, more massive than SLCs by $\sim 0.5\ \rm{dex}$, and they dominate the clump population above $M_{\rm c}\gtrsim 10^{7.6}\ \rm{M_\odot}$. LLCs tend to be found closer to the galactic centre, indicating clump migration to the centre or preferential formation at smaller radii. The LLCs are found to reside in high mass galaxies, indicating better clump survivability under supernova feedback there, due to clumps being more massive in these galaxies. We find the clump properties in the simulations and the observations to agree within a factor of $\sim\! 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源