论文标题
3D流体动力学中成功的普通信封射血和二进制中子星形成
Successful Common Envelope Ejection and Binary Neutron Star Formation in 3D Hydrodynamics
论文作者
论文摘要
在重力波(GW)和电磁(EM)辐射的多通间剂检测中观察到了二元中子星合并。在哈勃时间内合并以及许多其他紧凑型二进制文件,预计将通过共同的包膜演化形成二进制中子星。然而,对共同包膜进化的五十年研究尚未导致对导致紧凑型二进制的系统的多空间多时间演化的令人满意的理解。在本文中,我们报告了第一次成功模拟常见的包膜射血,从而导致3D流体动力学中的二进制中子星形成。我们模拟了12 $ m_ \ odot $ red Supergiant和1.4 $ M_ \ odot $中子星之间的相互作用的动力学阶段,用于不同的初始分离和初始条件。对于我们所有的模拟,我们发现$ a _ {\ rm f} \ $ a _ {\ rm f} \大约1.3 $ - $ 5.1 r_ \ odot $的完整信封弹射和最终轨道分离,这取决于模拟和标准,导致二进制中子星可以在哈伯时间内合并。我们发现$α_ {\ rm ce} $ - 根据仿真和标准,$ \约0.1 $ - $ 2.7 $的等效效率,但这可能针对这些扩展的祖细胞。我们将恒星的核心完全解析为$ \ lyssim 0.005 r_ \ odot $,我们的3D流体动力学模拟通过调整后的1D分析能量形式主义和2D运动学研究来告知,以克服模拟这些系统的高度计算成本。我们在本文中开发的框架可用于模拟恒星之间的各种相互作用,从恒星合并到通往GW来源的常见包络发作。
A binary neutron star merger has been observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12$M_\odot$ red supergiant and a 1.4$M_\odot$ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and final orbital separations of $a_{\rm f} \approx 1.3$-$5.1 R_\odot$ depending on the simulation and criterion, leading to binary neutron stars that can merge within a Hubble time. We find $α_{\rm CE}$-equivalent efficiencies of $\approx 0.1$-$2.7$ depending on the simulation and criterion, but this may be specific for these extended progenitors. We fully resolve the core of the star to $\lesssim 0.005 R_\odot$ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources.